Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Bảo An
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:26

a: TXĐ: D=R

Khi \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=-\left(-x\right)^2-2\cdot\left(-x\right)+3\)

\(=-x^2+2x+3\)

\(\Leftrightarrow f\left(-x\right)\ne f\left(x\right)\ne-f\left(x\right)\)

Vậy: Hàm số không chẵn không lẻ

 

Quỳnh Như Trần Thị
Xem chi tiết
Trà My
Xem chi tiết
Truong Dung
Xem chi tiết
Akai Haruma
12 tháng 7 2021 lúc 23:43

a. Với $x_1, x_2\in\mathbb{R}$ thỏa $x_1\neq x_2$ thì:

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{-2(x_1^2-x_2^2)+(x_1-x_2)}{x_1-x_2}=1-2(x_1+x_2)\)

Với $x_1,x_2> \frac{1}{4}$ thì $A< 0$ nên hàm số nghịch biến trên $(\frac{1}{4}; +\infty)$

Với $x_1,x_2< \frac{1}{4}$ thì $A>0$ nên hàm số đồng biến trên $(-\infty; \frac{1}{4})$

 

Akai Haruma
12 tháng 7 2021 lúc 23:50

b. TXĐ: $D=(-\infty; 2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2-x_1}-\sqrt{2-x_2}}{x_1-x_2}=\frac{-1}{\sqrt{2-x_1}+\sqrt{2-x_2}}< 0\)

Vậy hàm số nghịch biến trên tập xác định $(-\infty;2]$

c. TXĐ: $D=[0;2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2x_1-x_1^2}-\sqrt{2x_2-x_2^2}}{x_1-x_2}=\frac{2-(x_1+x_2)}{\sqrt{2x_1-x_1^2}+\sqrt{2x_2-x_2^2}}\)

Nếu $x_1,x_2\in (1;2)$ thì $A<0$ nên hàm số nghịch biến trên $(1;2)$

Nếu $x_1,x_2\in (0;1)$ thì $A>0$ nên hàm số nghịch biến trên $(0;1)$

 

 

Lê Văn Cường
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 4:21

Đáp án A

Quỳnh Như Trần Thị
Xem chi tiết
bepro_vn
25 tháng 8 2021 lúc 21:53

1 nghịch biến(a<0) 

2 đồng biến

3,4 thay các g trị tm đk vào

hojk tốt

Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 1 2019 lúc 17:02

Đáp án A