CMR : \(\overline{ab}+\overline{cd}⋮11\)
Nhanh lên nha m.n ! ai nhanh mik tk cho :>>
\(101x\overline{ab}=\overline{2b,a3}\)
ai nhanh mình tk cho
CMR :
a) \(\overline{aaaa}⋮11\)
b) \(\overline{ababab}\)chia hết cho 3 ; 7 ; 13
Giúp mìk đi ! Lm đầy đủ nhé ! Ai nhanh hứa tk :>>
aaaa = 1111
Câu dưới không biết
K mk nha
*Mio*
a , \(aaaa=a.1111\)
Mà \(1111⋮11\)
\(\Rightarrow aaaa⋮11\)
b, +, \(ababab=ab.10101\)
Mà \(10101⋮3\)
\(\Rightarrow ababab⋮3\)
+, \(ababab=ab.10101\)
Mà \(10101⋮7\)
\(\Rightarrow ababab⋮7\)
+, \(ababab=ab.10101\)
Mà \(10101⋮13\)
\(\Rightarrow ababab⋮13\)
\(a)\)\(\overline{aaaa}=1000a+100a+10a+a=1111a=11.101a⋮11\) ( đpcm )
\(b)\)\(\overline{ababab}=10000\overline{ab}+100\overline{ab}+\overline{ab}=10101\overline{ab}\)
Suy ra :
\(10101\overline{ab}=3.3367.\overline{ab}⋮3\)
\(10101\overline{ab}=7.1443.\overline{ab}⋮7\)
\(10101\overline{ab}=13.777.\overline{ab}⋮13\)
Chúc bạn học tốt ~
CMR :
\(\overline{abab}⋮11\)
Nhanh lên nha mai mk nộp bài rồi . Ai nhanh mk tick nha
1 chứng minh rằng\(\overline{ab}+\overline{cd}\) chia hết cho 11 thì\(\overline{abcd}\) chia hết cho 11
2 cho 2 só tự nhiên \(\overline{abc},\overline{deg}\) dều chia 11 dư 5 chứng minh rằng số \(\overline{abcdeg}\) chia hết cho 11
ai nhanh, đúng mk tc
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
Hãy tìm các chữ số a,b,c,d biết rằng các số a,\(\overline{ad}\),\(\overline{cd}\),\(\overline{abcd}\)là các số chinh phương
Ai nhanh nhất ,nhưng phải giải rõ từng bước ra tì mk tk cho
mình không muốn vào math nhiều lên mình bỏ dấu gạch trên đầu nhá
vì a là số chính phương => \(a\in\left\{1;4;9\right\}\)
+Nếu a=1 => ad=16 => d=6=> \(c\in\left\{1;3\right\}\)
-Nếu c=1 => abcd=1b16 => vô lý vì không có số chính phương nào như vậy
-Nếu c=3 => abcd=1b36 => b=9
+Nếu a=4 => ad=49 => d=9 => c=4 => abcd=4b49 (loại)
+Nếu a=9 => ad=9d (vô lý)
Bài 1:Chứng minh rằng
a) \(\overline{ab}\) = 2.\(\overline{cd}\) → \(\overline{abcd}\) ⋮ 67
b) Cho \(\overline{abc⋮27}\) chứng minh rằng \(\overline{bca}\) ⋮ 27
Bài 2: Chứng minh rằng: Nếu \(\overline{ab}\) + \(\overline{cd}\) ⋮11 thì \(\overline{abcd}\) ⋮11
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
Các bạn giải nhanh cho mình nhé. Thanks!
Giúp mình đi nha!!! Mình gửi mấy lần rồi mà không ai trả lời - -
CMR nếu \(\overline{ab}\) = 2.\(\overline{cd}\) thì \(\overline{abcd}\) chia hết cho 67
Bài này không khó lắm nha bạn ^^
Ta có : \(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{cd}=201\overline{cd}\)(vì ab = 2.cd)
201 chia hết cho 67 => 201cd (có gạch đầu) chia hết cho 67 => abcd chia hết cho 67
Có số abcd =100 ab + cd =200cd + cd
=> 201cd , mà 201 chia hết cho 67
=> ab = 2 cd thì abcd chia hết cho 67
chứng minh rằng: a) nếu \(\overline{ab}+\overline{cd}+\overline{eg}\) \(⋮\) 11 thì \(\overline{abcdeg}\) \(⋮\) 11
Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\)
Ta có: \(\overline{abcdeg}\) = 10000.\(\overline{ab}\) + 100.\(\overline{cd}\) + \(\overline{eg}\)
= (9999.\(\overline{ab}\) + 99.\(\overline{cd}\) ) + ( \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\))
Theo bài ra, ta có: \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\) \(⋮\) 11
Vì 9999.\(\overline{ab}\) + 99.\(\overline{cd}\) \(⋮\) 11 và \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\) \(⋮\) 11
nên (9999.\(\overline{ab}\) + 99.\(\overline{cd}\) ) + ( \(\overline{ab}\) + \(\overline{cd}\) + \(\overline{eg}\)) \(⋮\) 11
Vậy \(\overline{abcdeg}\) \(⋮\) 11