tim số tự nhiên n sao cho n+19 và n-57 đều là các số chính phương
Tim các số tự nhiên n sao cho 4n+5 và 9n+7 đều là các số chính phương
Ta đặt :
\(\hept{\begin{cases}4n+5=a^2\\9n+7=b^2\end{cases}}\)( a,b là các số tự nhiên )
\(\Rightarrow\hept{\begin{cases}36n+45=9a^2\\36n+28=4b^2\end{cases}}\)
\(\Rightarrow\left(36n+45\right)-\left(36n+28\right)=9a^2-4b^2\)
\(\Rightarrow17=\left(3a-2b\right)\left(3a+2b\right)\)
Vì a, b là các số tự nhiên nên 3a-2b , 3a+3b là cá số nguyên và 3a-2b <= 3a+2b nên ta có
\(\left(3a-2b;3a+2b\right)\in\left\{\left(1;17\right);\left(-17;-1\right)\right\}\)
\(\Rightarrow6a\in\left\{18;-18\right\}\)
\(\Rightarrow a\in\left\{3;-3\right\}\)
Mà a là số tự nhiên nên a=3
\(\Rightarrow4n+5=a^2=3^2=9\)
\(\Rightarrow4n=4\)
\(\Rightarrow n=1\)
Vậy n=1
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Tìm tất cả các số tự nhiên n sao cho các số n-50 và n + 50 đều là các số chính phương
Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu
Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc
Tìm tất cả các số tự nhiên n sao cho các số n-50 và n + 50 đều là các số chính phương
Tìm số tự nhiên n sao cho 2n+2017 và n+2019 đều là các số chính phương
CMR: nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n la bội số của 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Tìm số tự nhiên sao cho:n-19 và n+44 đều là các số chính phương
CÁC BẠN GIÚP MK NHA MK ĐANG CẦN GẤP LẮM LUN
Giả sử n - 19 = a2; n + 44 = b2 (a; b thuộc tập hợp số tự nhiên)
=> b2 - a2 = 63 => (b - a)(b + a) = 63
Rõ ràng a + b > b - a (tức 2a > 0 do a là số tự nhiên và do 63 không phải là số chính phương nên a + b khác b - a => 2a khác 0)
và a + b > 0 => b - a > 0
Ta có: 63 = 3.21 = 7.9
TH1: \(\hept{\begin{cases}a+b=21\\b-a=3\end{cases}\Rightarrow\hept{\begin{cases}a=9\\b=12\end{cases}}}\)
TH2: \(\hept{\begin{cases}a+b=9\\b-a=7\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Thế vào ta có:
TH1: \(\hept{\begin{cases}n-19=a^2=81\\n+44=b^2=144\end{cases}}\Rightarrow\hept{\begin{cases}n=100\\n=100\end{cases}}\Rightarrow n=100\)(nhận)
TH2: \(\hept{\begin{cases}n-19=a^2=1\\n+44=b^2=64\end{cases}}\Rightarrow\hept{\begin{cases}n=20\\n=20\end{cases}}\Rightarrow n=20\)(nhận)
Vậy n = 100 hay n = 20 thì thỏa ycbt
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Tìm tất cả các số tự nhiên n sao cho 3n + 19 là số chính phương
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24