Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VannAnhhvute
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2020 lúc 21:44

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Nguyễn Thùy Chi
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 21:16

Điều kiện: x>2

P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)

P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P= \(\dfrac{1}{4}\)

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)

\(4\sqrt{x}-8=3\sqrt{x}\)

\(\sqrt{x}=8\)

⇔x=64 (TM) 

Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)

 

 

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 20:55

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)

mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1

Kết hợp ĐKXĐ,ta được: x>1

Vậy: Để P>0 thì x>1

ひまわり(In my personal...
3 tháng 2 2021 lúc 21:03

undefined

tuấn tuấn
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 16:02

\(a,ĐK:x\ne4;x\ge3\\ b,ĐK:x\ge1\)

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 23:05

ĐKXĐ: \(\left[{}\begin{matrix}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x< -12\end{matrix}\right.\)

Lizy
Xem chi tiết
@DanHee
15 tháng 8 2023 lúc 20:10

\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)

\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)

Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)

Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 20:05

a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)

=>x+6<0

=>x<-6

b: ĐKXĐ: (-2)/(6-x)>=0

=>6-x<0

=>x>6

c: ĐKXĐ: (-x+3)/(-6)>=0

=>-x+3<=0

=>-x<=-3

=>x>=3

d: ĐKXĐ: (7x-1)/-9>=0

=>7x-1<=0

=>x<=1/7

e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0

=>x+2>=0

=>x>=-1

f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0

=>x-2>=0

=>x>=2

tranthuylinh
Xem chi tiết
Chuyên Toán
18 tháng 8 2021 lúc 13:16

a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)  \(\left(ĐKXĐ:x\ge0\right)\)

\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)

\(\text{​​}\text{​​}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)

\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)

c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)

\(\Leftrightarrow x-\sqrt{x}+1>x\)

\(\Leftrightarrow x< 1\)

 

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 13:55

a: ĐKXĐ: \(x\ge0\)

Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 5 2022 lúc 10:23

đk x >= 0 ; x khác 1/4 

Ta có \(^{P=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}+1}}=\dfrac{5\sqrt{x}+1}{2\sqrt{x}+1}\)

\(\Rightarrow5\sqrt{x}+1⋮2\sqrt{x}+1\Leftrightarrow10\sqrt{x}+2⋮2\sqrt{x}+1\)

\(\Leftrightarrow5\left(2\sqrt{x}+1\right)-3⋮2\sqrt{x}+1\Rightarrow2\sqrt{x}+1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

\(2\sqrt{x}+1\) 1 -1 3 -3
x 0 loại 1 loại

 

tranthuylinh
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:15

\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1>=0\)

=>\(\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\left(\sqrt{x}+1\right)}>=0\)

=>-x+6căn x-9>=0

=>x=3