Bài 3
Cho a + b + c = 2007 và 1/ a + b + 1/ b + c + 1/ c + a = 1/ 90. Tính
Cho a+b+c=2007 và 1/a+b + 1/b+c + 1/c+a = 90 . Tính M = a/b+c + b/a+c + c/a+b
Lời giải:
$(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})=2007.90$
$\Rightarrow \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}=180630$
$\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=180630$
$\Rightarrow M+1+1+1=180630$
$\Rightarrow M =180627$
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
nhân 2 vế cho (a+b+c) ta được:
a+b+c/a+b + a+b+c/b+c + a+b+c/c+a= a+b+c/90
1 + c/a+b + 1+ a/b+c + 1+ b/c+a=2007/90
c/a+b + a/b+c + b/c+a= 2007/90 - 3=? tự tính
vậy kết quả cần tìm là:
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
Bài 1 : Cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S = \(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a,b,c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
tính f=\(\frac{a}{b}+c+\frac{b}{c}+a+\frac{c}{a}+b\)
Cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+d}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(3+S=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\Rightarrow S=\frac{223}{10}-3=\frac{193}{10}\)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=>S+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{c}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\)
\(=>S=\frac{223}{10}-\frac{30}{10}=\frac{193}{10}\)
cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)=\(\frac{1}{90}\)
tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{90}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2017}{90}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2017}{90}\)
\(\Rightarrow A+3=\frac{2017}{90}\)
\(\Rightarrow S=\frac{2017}{90}-3=\frac{1747}{90}\)
từ giả thiết, ta có
\(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}=\frac{1}{90}\)
Mà \(S=\frac{a}{2017-a}+\frac{b}{2017-b}+\frac{c}{2017-c}=-3+\frac{2017}{2017-a}+\frac{2017}{2017-b}+\frac{2017}{2017-c}\)
=-3+\(2017\left(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}\right)=-3+\frac{2017}{90}=\frac{1747}{90}\)
vậy ...
^_^
Cho a + b + c = 2007 và \(\frac{1}{a+b}\)+ \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)= \(\frac{1}{90}\)Tính S = \(\frac{a}{b+c}+\frac{b}{c+a} +\frac{c}{a+b}\)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)
Bài 1: Cho abcd=1. Tính P = aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1
Bài 2: Cho a, b, c luôn dương và a3+b3+c3=3abca3+b3+c3=3abc. Tính Q = (1+ab)(1+bc)(1+ca)(1+ab)(1+bc)(1+ca)
Bài 3: Cho x2+y2+z2−zx+4y=6z−14x2+y2+z2−zx+4y=6z−14. Tính P = x1945+y2+zx1945+y2+z
Bài 4: Cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính a^2005+b^2006+c^2007
Bài 5: Cho 1a+1b+1c=51a+1b+1c=5 và a+b+c=abc. Tính 1a2+1b2+1c2