Cho a,b,c khác 0 và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính P=\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
Cho \(a,b,c\in Z;abc\ne0,\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc,\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
Cho a,b,c là các số dương a.b.c=8 va \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
Tính M =\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)vơi a,b,c \(\ne\) 0; b\(\ne\) c chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
Bài 1 : Cho biết \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với a,b,c khác 0. Tính \(A=\frac{a^{1000}.b^{1017}}{c^{2017}}\)
nếu các số a,b,c thỏa mãn đồng thời các điều kiện abc=60 , l a-bl = lb-cl=1, l c-a l=2 tính giá trị của \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)
cho a,b ,c là 3 số thực khác 0.Thỏa mãn điều kiện \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị biểu thức P=(\(1+\frac{b}{a}\) )*(\(1+\frac{a}{c}\) )*(\(1+\frac{c}{b}\) )
a) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với a, b, c khác 0; b khác c). CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
b) Tìm các số nguyên n sao cho biểu thức sau là số nguyên: P = \(\frac{2n-1}{n-1}\)
c) Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho a+c=2b và \(\frac{1}{c}=\frac{1}{2}\cdot\left(\frac{1}{b}+\frac{1}{a}\right)\)
C/m : a, b ,c ,d lập thành 1 tỉ lệ thức