Ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{c+a+b}{b}\)
=> a = b = c
=> P = 8
Th 2 :
a+b+c=0
=> \(\left\{\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
Mặt khác :
P = \(\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
=> P = \(\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}\)
=> P= - 1