(x^2-3x-1)^2 -12(x^2-3x-1)+27
phân tích đa thức thành nhân tử:
x^3 - 3x^2 + 4x - 2x^3 - 4x^2 + 5x - 2(x^2 - 3x - 1) ^2 -12(x^2 - 3x -1) + 27(x^2 + x +1)(x^2 + x +2) -12(x^2 + x + 4) + 8x27x^3 - 27 x^2 +3x - 1
1/27 + x^3
x^3- 3x^2+3x-1
0,001-1000x^3
12/5 x^2y^2-9x^4 - 4/25y^4
a^2y^2+b^2x^2-2axby
100-(3x-y)^2
64x^2-(8a+b)^2
27x^3-a^3b^3
b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e: \(a^2y^2-2axby+b^2x^2\)
\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)
\(=\left(ay-bx\right)^2\)
f: \(100-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
g: \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
Rút Gọn (x2 - 3x - 1)2 - 12(x2 -3x - 1) + 27
phân tích đa thức thành nhân tử (x2-3x-1)2 -12(x2-3x-1)+27
Đặt \(x^2-3x-1=a\), ta có:
\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)
và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)
phân tích đa thức sau thành nhân tử
\((\)x ^2-3x-1)^2-12(x^2-3x-1)+27
Đặt \(x^2-3x-1=a\)thay vào biểu thức ta được :
\(a^2-12a+27\)
\(=a^2-3a-9a+27\)
\(=a\left(a-3\right)-9\left(a-3\right)\)
\(=\left(a-3\right)\left(a-9\right)\)(1)
Thay \(a=x^2-3x-1\)vào (1) ta được :
\(\left(x^2-3x-1-3\right)\left(x^2-3x-1-10\right)\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-11\right)\)
Bạn Châu sai đáp án cuối
phải là (x2-3x-4)(x2-3x-10) nha
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
F=x2+2xy+y2-x-y+12
G=(x2-3x-1)2-12(x2-3x-1)+27
F=x2+2xy+y2-x-y-12
= (x + y)^2 - (x + y) - 12
= (x + y)(x + y - 1) - 12
đặt x + y = t
F = t(t - 1) - 12
= t^2 - t - 12
= (t - 4)(t + 3)
G=(x2-3x-1)2-12(x2-3x-1)+27
đăth x^2 - 3x - 1 = t
G = t^2 - 12t + 27
= (t - 3)(t - 9)
có t = x^2 - 3x - 1
thay vào
Câu F ( kiểm tra lại đề )
Câu G . Đặt x^2 -3x-1=t
t^2 -12t+27 ( thực hiện pp tách)
\(F=x^2+2xy+y^2-x-y+12\)
\(=\left(x+y\right)^2-\left(x+y\right)+12\)
\(=\left(x+y-\frac{1}{2}\right)^2+\frac{47}{4}>0\) thì làm sao phân tích nhân tử :)
\(G=\left(x^2-3x-1\right)-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
Bài 1: tìm x
1, 2x(3x-1)+1-3x=0
2, x\(^2\)(2x-3)+12-8x=0
3, 25(x-1)\(^2\)-4=0
4, 25x\(^2\)-10x+1=0
5, -4x\(^2\)+\(\dfrac{1}{9}\)=0
6, (x-1)\(^3\)=8
7, (2x-1)\(^3\)+27=0
8, 125+\(\dfrac{1}{8}\)(x-1)\(^3\)=0
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
`@` `\text {Ans}`
`\downarrow`
`5,`
`-4x^2 + 1/9 = 0`
`<=> -4x^2 = 0 - 1/9`
`<=> -4x^2 = -1/9`
`<=> 4x^2 = 1/9`
`<=> x^2 = 1/9 \div 4`
`<=> x^2 = 1/36`
`<=> x^2 = (+-1/6)^2`
`<=> x = +-1/36`
Vậy, `S = {1/36; -1/36}`
`6,`
`(x-1)^3 = 8`
`<=> (x-1)^3 = 2^3`
`<=> x-1=2`
`<=> x = 2 + 1`
`<=> x = 3`
Vậy, `S = {3}`
`7,`
`(2x-1)^3 + 27 = 0`
`<=> (2x - 1)^3 = -27`
`<=> (2x-1)^3 = (-3)^3`
`<=> 2x - 1 = -3`
`<=> 2x = -3 + 1`
`<=> 2x = -2`
`<=> x = -1`
Vậy,` S = {-1}`
`8,`
`125 + 1/8(x-1)^3 = 0`
`<=> 1/8(x-1)^3 = - 125`
`<=> (x-1)^3 = -125 \div 1/8`
`<=> (x-1)^3 = -1000`
`<=> (x-1)^3 = (-10)^3`
`<=> x - 1 = - 10`
`<=> x = -10+1`
`<=> x = -9`
Vậy, `S = {-9}.`
Phân tích đa thức thành nhân tử :
A= (x2- 3x - 1)2 - 12(x2 - 3x -1) + 27
Đặt x2 - 3x - 1 = k
Khi đó, ta có: A = k2 - 12k + 27 = k2 - 3x - 9x + 27 = k(k - 3) - 9(k - 3) = (k - 9)(k - 3)
=> (x2 - 3x - 1 - 9)(x2 - 3x - 1 - 3) = (x2 - 3x - 10)(x2 - 3x - 4)
= (x2 - 5x + 2x - 10)(x2 - 4x + x - 4)
= [x(x - 5) + 2(x - 5)][x(x - 4) + (x - 4)]
= (x + 2)(x - 5)(x + 1)(x - 4)
1/3(1-4x)(x-1) +4(3x-2) (x+3)=-27
2/ (x+3) (x^2 -3x+9)-x(x-1)(x+1)=27
1/
\(3\left(-1-4x^2+5x\right)+4\left(3x^2+7x-6\right)=-27\)
\(\Leftrightarrow-3-12x^2+15x+12x^2+28x-24=-27\)
\(\Leftrightarrow43x=0\Rightarrow x=0\)
2/
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-1\right)=27\)
\(\Leftrightarrow x^3+27-x^3+x=27\)
\(\Leftrightarrow x=0\)