\(X^4+2016x^2+2015x+2016\)Phân tích đa thức thành nha tử
\(^{2015x^4+2016x^2+x+2016}\)
Phân tích đa thức thành nhân tử
2015x4 + 2016x2 + x + 2016
= (2015x4 + 2015x3 + 2015x2) + (- 2015x3 - 2015x2 - 2015x) + (2016x2 + 2016x + 2016)
= (x2 + x + 1)(2015x2 - 2015x + 2016)
Vào câu trả lời tương tự đi có đáp án đó
Phân tích x^4+2016x^2+2015x+2016 thành nhân tử
Phân tích thành nhân tử: x4+2016x2+2015x+2016
bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)
=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
H=x^4-2016x^3+2016x^2-2016x+2025
Phân tích đa thức thành nhân tử
Tính tại x=2015
bạn nhóm ba số giữa vs nhau r lấy x^4+1 xong phân k ra hehe mk cx ko chắc
Phân tích đa thức thành nhân tử:
X^4+2017x^2+2016x+2017
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
phân tích đa thức thành nhân tử : x^4 +2015x^2 +2014x +2015
\(x^4+2015x^2+2014x+2015.\)
=\(\left(x^4-x\right)+2015x^2+2015x+2015\)
=\(x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left(x^2-x-2015\right)\)
k cho mik
1. Phân tích đa thức sau đây thành nhân tử:
a) \(x^2+7x+6\) b) \(x^4+2016x^2+2015x+2016\)
2. Cho \(x^2+x-1=0\) . Tính giá trị biểu thức Q=\(x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)
3. Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) . Tính H= abc + a^2014 +b^2015 +c^2016
Ai trả lời 1 phần giúp mình thì sẽ tich cho . MÌNH ĐANG CẦN GẤP
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
Phân tích x^4+2014x^2+2015x+2016 thành nhân tử
Sửa đề: 2016x^2
x^4+2016x^2+2015x+2016
=x^4+x^3+x^2-x^3-x^2-x+2016x^2+2016x+2016
=(x^2+x+1)(x^2-x+2016)
Phân tích đa thức thành nhân tử: x4 + 2017x2 + 2016x + 2017