Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

1. Phân tích đa thức sau đây thành nhân tử:
a) \(x^2+7x+6\) b) \(x^4+2016x^2+2015x+2016\)
2. Cho \(x^2+x-1=0\) . Tính giá trị biểu thức Q=\(x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)
3. Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) . Tính H= abc + a^2014 +b^2015 +c^2016

Ai trả lời 1 phần giúp mình thì sẽ tich cho . MÌNH ĐANG CẦN GẤP

Lightning Farron
9 tháng 11 2016 lúc 20:59

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

Lightning Farron
9 tháng 11 2016 lúc 21:07

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)


Các câu hỏi tương tự
Hoàng Yến
Xem chi tiết
Nguyễn Thị Hồng Ngọc
Xem chi tiết
Biện Bạch Ngọc
Xem chi tiết
Mítt Chocolate
Xem chi tiết
Đỗ Trung
Xem chi tiết
Erza Scarlet
Xem chi tiết
Chu Ngọc Ngân Giang
Xem chi tiết
Võ Dương Vĩnh Thắng
Xem chi tiết
La Thị Thu Phượng
Xem chi tiết