Bài 1 : Tìm x biết : \(3^{x-1}+5.3^{x-1}=162\)
Bài 2 : Tìm x,y thuộc Z để x + y + xy = 2
Bài 1: Tìm x thuộc Z biết:
(x-3)+(x-2)+(x-1)+…+10+11=11
Bài 2: Tìm x,y thuộc Z biết:
a)(x-3)(2y+1)=7
b)(2x+1)(3y-2)= -55
c) xy+3x-7y=21
Bài 1 : tìm x thuộc N
a) x - { x - [( -x + 1 )]}
b) ( x + 5 ) . ( x -2 ) < 0
Bài 2 :
Tìm x, y thuộc Z
a ) ( x+1).(xy-1)
b) 3x + 4y - xy =15
Bài 3 : Tìm x,y,z thuộc N : 26^x= 25^y = 26^z
Bài 4 : x-y=2011
y - z = -2012
z + x = 2013
Bài 5 :
tìm phân số bằng phân số 20/39 pít UWCLN của tử và mẫu của phân số đó là 36
Bài 6 :
Tìm a,b thuộc N biết :
BCNN ( a,b) = 180
UWCln ( a,b ) 12
Bài 7:
tìm a,b biết :
UwCLN ( a,b)+ BCNN ( a,b) =23
Bài 8 :
tìm x, y thuộc N*: y+1 chia hết cho x
x + 1 chia hết cho y
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
Bài 7 :
gọi UWCLN ( a,b ) = d ( d thuộc N*)
=> a = d .m, b = d . n
( m,n)=1
BCNN ( a,b) = d . m. n
mà UWCLN (a,b )+ BCNN (a,b ) = 23
=> d + dmn = 23
=> d .( 1+mn) =23
........ v.v
tử từng t/h
Đ/S : vs m = 2 2 => n=1 hoặc m=11, n=2
vs a = 22 => b =1 hoặc a =11 => b = 2
Bài 7:Đ/s : x=1,y=1
x=3, y=2
x=1,y=2
x=2,y=3
x=2,y=1
Bài 1:Tìm x,y,z thuộc Z sao cho:x-y=-9;y-z=-10;z+x=11
Bài 2:Tìm x thuộc Z biết:
a.(x+1)+(x+3)+(x+5)+...+(x+99)=0
b.(x-3)+(x-2)+(x-1)+...+10+11=11
c.x+(x+1)+(x+2)+...+2018+2019=2019
Bài 3:Tìm các số nguyên x,y biết:
a.(x-2)(y-3)=7 b.(x+1)(2y-3)=10
c.xy-3x=-19 d.3x+4y-xy=16
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
bài 1; tìm số tự nhiên x, y biết
a, 5^x +5^x+2= 650
b, 3^x-1+5.3^x-1=162
c, 2^x+1. 3^y=12^x
d, 10^x : y^5=y^20
e,2^x=4^y-1 và 27^y= 3^x+8
bài 2 : tìm x trong các đẳng thức sau
a, I x-1I+3x=1
b,I5x-3I-x=7
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
c và d bài 1 có tại đây Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Bài 1: Cho a, b, x, y thuộc Z, trong đó x, y không đối nhau. Chứng minh rằng nếu a.x - b.y ⁞ x+y thì a.y - b.x ⁞ x+y thì a.y - b.x ⁞ x+y.
Bài 2: Cho:
A = 1 + 2 - 3 - 4 + 5 + 6 -...- 99 - 100
a) A có chia hết cho 2, 3, 5 không?
b) Tìm số các ước nguyên của A.
Bài 3: Tìm x, y thuộc Z biết:
a) xy +3x - 7y = 21.
b) xy + 3x - 2y =11.
c) [x+1] + [x+2] +...+ [x+100] = -1.
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Bài 1:Tìm x, y thuộc Z biết: (2x-1).(2y+1)=21
Bài 2: Tìm x,y thuộc Z biết: 3x+4y - xy = 15
(Ghi rõ cách giải)
thanks các bạn nhìu nha
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)