Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, AC = 4cm. Tính độ dài các đoạn HB, HC, AH
b) Chứng minh: AE.EB + AF.FC = AH2
c) Chứng minh: BE = BC.cos3B
Cho tam giác ABC vuông tại A, đường cao AH
a) Biết AB = 3cm; AC = 4cm. Tính độ dài các đoạn BC, HB, HC, AH
b) Vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F
1) CMR: AE.EB = \(EH^2\)
2) AE.EB + AF.FC = \(AH^2\)
a: BC=căn 3^2+4^2=5cm
HB=AB^2/BC=1,8cm
HC=5-1,8=3,2cm
AH=3*4/5=2,4cm
b:
1: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=EH^2
2: ΔHAC vuông tại H có HF là đường cao
nên AF*FC=HF^2
=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Bài 2:
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot EB=HE^2\)
b: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: FE=AH và \(\widehat{FHE}=90^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot FC=FH^2\)
Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:
\(HF^2+HE^2=FE^2\)
\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)
1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)
BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)
\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)
2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.
b)Chứng minh tương tự câu a), ta được:
AF.FC=HF^2
Lại có:
Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.
Suy ra, HF = AE
Suy ra, AF.FC=AE^2
Mà AE.EB=HE^2
Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)
3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:
\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, AC = 4cm. Tính độ dài các đoạn HB, HC, AH
b) Chứng minh: AE.EB + AF.FC = AH2
c) Chứng minh: BE = BC.cos3B
bạn tự vẽ hình nhá!
giải
a) ÁP DỤNG ĐỊNH LÝ PI-TA GO-VÀ \(\Delta\)VUÔNG ABC TA CÓ:
\(AB^2\)\(+\)\(AC^2\)\(=\)\(BC^2\)
\(\Rightarrow\)\(3^2\)\(+\)\(4^2\)\(=\)\(BC^2\)
\(\Rightarrow9+16=BC^2\)
\(\Rightarrow25=BC^2\)
\(\Rightarrow5=BC\)
ÁP DỤNG HỆ THỨC 3 VÀO \(\Delta\)ABC TA CÓ:
AB.AC=BC.CH\(\Rightarrow\)AH=\(\frac{AB.AC}{BC}\)=\(\frac{3.4}{5}\)=2,5
ÁP DỤNG HỆ THỨC LƯỢNG TRONG TAM GIÁC TA CÓ:
\(AB^2=BC.BH\)\(\Rightarrow BH=\frac{AB^2}{BC}\)=\(\frac{3^2}{5}=1,8\)
\(AC^2=BC\times CH\Rightarrow HC=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)
2: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)
3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
Cho tam giác ABC vuông tại a có đường cao AH 1.cho biết AB =3cm , AC=4cm , tính độ dài các đoạn BC,HB,HC,AH 2. Kẻ HE vuông góc với AB , HF vuông góc với AC ( E thuộc AB , F thuộc AC )
a: BC=5cm
AH=2,4cm
BH=1,8cm
CH=3,2cm
Cho tam giác ABC vuông rại A có đường cao AH
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC và AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh \(AE.EB=EH^2\)
b)Chứng minh \(AE.EB+AF.FC=AH^2\)
3) Chứng minh \(BE=BC.\cos^3B\)
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC) a)Chứng minh EF=AH b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH c) Goih M,N theo thứ tự là trung điểm của HB,HC.Tứ giác MNFE là hình gì?Vì sao?
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
mình chịu thoiii
khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm
1) Tam giác ABC vuông tại A, đường cao AH. Biết HB=3,6cm; HC=6,4cm
a) Tính AB, AC, AH
b) Kẻ HE vuông góc với AB, HF vuông góc với AC. Tình độ dài EF
c) Chứng minh tam giác AEF đông dạng với tam giác ACB
2) Cho tam giác ABC có AB=3cm, BC=5cm, AC=4cm
a) Chứng minh tam giác ABC vuông tại A
b)Tính AH
c)Từ H lần lượt dựng các đường thẳng song song với AB, AC . Các đường thẳng này cắt AB tại E và AC tại F. Chứng minh tam giác BEH đông dạng với tam giác HFC. Từ đí suy ra BE.HC=HB.HF
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, AC = 4cm. Tính độ dài các đoạn HB, HC, AH
b) Chứng minh: AE.EB + AF.FC = AH2
c) Chứng minh: BE = BC.cos3B
a: BC=5cm
\(HB=\dfrac{3^2}{5}=1.8\left(cm\right)\)
HC=5-1,8=3,2cm
\(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)
b: \(AE\cdot EB+AF\cdot FC\)
\(=HE^2+HF^2=EF^2=AH^2\)