Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
siêu trộm thế kỉ XVI
Xem chi tiết
Võ Đông Anh Tuấn
22 tháng 9 2016 lúc 9:39

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}==\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}\)

\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{1}\)

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Rightarrow2\left(xy+yz+zx\right)=0\)

\(\Rightarrow xy+yz+zx=0\)

 

Zek Tim
Xem chi tiết
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:50

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:55

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m

Khách vãng lai đã xóa
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Lucky Lunch
Xem chi tiết
Mai Hà Chi
18 tháng 2 2017 lúc 16:28

a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)

Từ : x-y-z = 0

=>x – z = y; y – x = – z và y + z = x

Suy ra: B =\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)= -1(x,y,z\(\ne\)0) b)Ta có : \(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\) =>\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) Áp dụng tính chất dãy tỉ số bằng nhau,ta có \(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) =\(\frac{4\left(3x-2y\right)+3\left(2x-4z\right)+2\left(4y-3z\right)}{16+9+4}\) =0 =>\(\frac{4\left(3x-2y\right)}{16}\)=0 =>3x = 2y=> \(\frac{x}{2}\)=\(\frac{y}{3}\)(1) và\(\frac{3\left(2x-4z\right)}{9}\)=0 =>2z = 4x=>\(\frac{x}{2}\)=\(\frac{z}{4}\)(2) Từ(1)và (2)=>Đpcm c)Ta có:\(\frac{5-x}{x-2}\)=\(\frac{3-\left(x-2\right)}{x-2}\)=\(\frac{3}{x-2}\)-1(x\(\ne\)2) M nhỏ nhất\(\Leftrightarrow\)\(\frac{3}{x-2}\)nhỏ nhất \(\Leftrightarrow\)x-2 lớn nhất và x-2 <0
Nguyễn Huy Tú
18 tháng 2 2017 lúc 15:59

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)

\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

Mai Hà Chi
18 tháng 2 2017 lúc 16:31

Xin lỗi tiếp câu c nha bn

Khi đó GTNN của M là: M=\(\frac{3}{1-2}\)-1= -4khi x = 1

Xong rồi bn nha !!!hihi

tiểu thư họ nguyễn
Xem chi tiết
Trần Khởi My
18 tháng 3 2017 lúc 19:14

nek bn theo mk nghĩ đáng ra phải là mũ 2006 , mũ 2008 , mũ 2100 chứ

nếu đề là như mk nói thì mk giải cho , hoặc đề như bn là đúng thì để mk giải

Nguyen Dinh Dung
Xem chi tiết
Mai Ngoc
Xem chi tiết
Phan Văn Hiếu
11 tháng 8 2016 lúc 17:08

bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài

nguyễn dương diệu anh
Xem chi tiết
Girl
11 tháng 7 2019 lúc 13:22

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)

a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)

Nguyễn Linh Chi
11 tháng 7 2019 lúc 13:39

a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)

Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x

\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z

\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y

\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z

Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

câu b cách làm giống như câu a