Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
what the fack
Xem chi tiết
Phạm Thị Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2022 lúc 14:33

a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)

\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)

\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)

Để đây là phép chia hết thì a+2=0 và b-1=0

=>a=-2; b=1

b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)

=>bx+a=0

=>a=b=0

Thanh Vu
Xem chi tiết
Truy kích
21 tháng 7 2017 lúc 21:47

bài 2:

\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)

\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)

\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)

sao nữa nhỉ :v

Nguyễn Thị Phương Thảo
Xem chi tiết
Thanh Vu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 20:13

\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)

Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)

Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)

Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)

Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)

\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)

Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)

\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)

Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)

Đỗ thị như quỳnh
Xem chi tiết
T.Thùy Ninh
30 tháng 9 2017 lúc 20:35

b, \(ax^3+bx^2+5x-50⋮\left(x^2+3x-10\right)\)

\(\Rightarrow f\left(x\right)=ax^3+bx^2+5x-50⋮\left(x-2\right)\left(x+5\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=8a+4b+10-50=0\\f\left(-5\right)=-125a+25b-25-50=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=4\left(2a+b\right)=40\\f\left(-5\right)=-25\left(5a-b\right)=75\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=1\\f\left(-5\right)=5a-b=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{7}\\b=\dfrac{11}{7}\end{matrix}\right.\)

Đỗ Quốc Cựờng
Xem chi tiết
Edogawa Conan
Xem chi tiết
Phùng Khánh Linh
27 tháng 11 2017 lúc 18:11

a) Giả sử phép chia có thương là : q(x)

Khi đó , ta có : ax3 + bx - 24 = ( x + 1)( x + 3)q(x) , với mọi x ( 1)

Chọn các giá trị riêng của x sao cho :

( x + 1)( x + 3) = 0

Suy ra : x = -1 hoặc x = - 3

* Với x = -1 thì :

( 1) <=> -a -b - 24 = 0

<=> -( a + b) = 24

<=>a + b = -24 ( 2)

* Với x = -3 , thì :

( 1) <=> - 27a - 3b - 24 = 0

<=> -( 27a + 3b) = 24

<=> 27a + 3b = - 24 ( 3)

Từ ( 2 ; 3) suy ra a = 2 ; b = - 26

Vậy , ....

b) Do đa thức chia có bậc 4 ,đa thức bị chia có bậc 2 suy ra thương có bậc 2

Giả sử thương là : cx2 + dx + e

Ta có : x4 + ax2 + b = ( x2 + x + 1)( cx2 + dx + e)

x4 + ax2 + b = cx4 + dx3 + ex2 + cx3 + dx2 + ex + cx2 + dx + e

x4 + ax2 + b = cx4 + x3( d + c) + x2(e + d + c) + x( e + d) + e

Đồng nhất hệ số , ta có :

* c = 1

* d + c = 0 --> d + 1 = 0 --> d = -1

* e + d + c = a --> a = 1 - 1 + 1 = 1

* e + d = 0 e - 1 = 0 --> e = 1

* e = b --> b = 1

Vậy , a = 1 ; b = 1 thỏa mãn điều kiện đề bài