Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nữ hoàng sến súa là ta
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2019 lúc 18:56

a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)

=>  \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

\(=20+14\sqrt{2}+20-14\sqrt{2}\)

\(+3\left(\text{​​}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)

\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)

\(\Rightarrow A^3=40+3.A.2\)

=> \(A^3-6A-40=0\)

<=> \(A^3-16A+10A-40=0\)

<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)

<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)

<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))

Vậy A = 4.

b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)

=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)

\(=26+15\sqrt{3}-26+15\sqrt{3}\)

\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)

\(=30\sqrt{3}-3B.1\)

=> \(B^3+3B-30\sqrt{3}=0\)

<=> \(B^3-12B+15B-30\sqrt{3}=0\)

<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)

<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)

<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))

<=> \(B=2\sqrt{3}\)

Khách vãng lai đã xóa
qquang vu
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 21:27

Đặt \(x=\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt[]{3}}\)

\(\Rightarrow x^3=52+3\sqrt[3]{\left(26+15\sqrt[]{3}\right)\left(26-15\sqrt[]{3}\right)}.x\)

\(\Leftrightarrow x^3=52+3x\)

\(\Leftrightarrow x^3-3x-52=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+13\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x+2\right)^2+9\right]=0\)

\(\Leftrightarrow x=4\)

Phạm Ngọc Khanh
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 7 2023 lúc 9:40

\(=\sqrt{\left(2-\sqrt{3}\right)^2\left(26+15\sqrt{3}\right)}-\sqrt{\left(2+\sqrt{3}\right)^2\left(26-15\sqrt{3}\right)}=\)

\(=\sqrt{\left(7-4\sqrt{3}\right)\left(26+15\sqrt{3}\right)}-\sqrt{\left(7+4\sqrt{3}\right)\left(26-15\sqrt{3}\right)=}\)

\(=\sqrt{7.26+7.15\sqrt{3}-4.26\sqrt{3}-180}-\sqrt{7.26-7.15\sqrt{3}+4.26\sqrt{3}-180}=\)

\(=\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}\)

Sakamoto Sara
Xem chi tiết
Phan Nghĩa
11 tháng 10 2017 lúc 19:49

Xét: \(A=\sqrt{26+15\sqrt{3}}\)  dễ thấy A > 0

\(\Leftrightarrow A^2=52-2\sqrt{26^2-15^2.3}=50\Leftrightarrow A=\sqrt{50}\)

Vậy: \(A=2+\sqrt{3}.\sqrt{26+15\sqrt{3}}-2\sqrt{3}.\sqrt{26-15\sqrt{3}}\)

\(=2+\sqrt{3}.A=2+\sqrt{3}.\sqrt{50}=5\sqrt{6}+10\sqrt{2}\)

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Cô Tuyết Ngọc
13 tháng 1 2023 lúc 11:12

Yêu cầu đề bài là gì em?

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
13 tháng 1 2023 lúc 21:33

rút gọn những biểu thức sau 

Nàng tiên cá
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2019 lúc 18:57

a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 1:32

Lời giải:

Gọi biểu thức trên là $A$

Đặt \(\sqrt[3]{15\sqrt{3}-26}=a; \sqrt[3]{15\sqrt{3}+26}=b\). Ta có:

\(a^3-b^3=-52\)

\(ab=-1\)

\(A^3=(a-b)^3=a^3-3ab(a-b)-b^3=-52+3A\)

\(\Leftrightarrow A^3-3A+52=0\)

\(\Leftrightarrow A^2(A+4)-4A(A+4)+13(A+4)=0\)

\(\Leftrightarrow (A+4)(A^2-4A+13)=0\)

Dễ thấy $A^2-4A+13>0$ nên $A+4=0$

$\Leftrightarrow A=-4$

 

Tam Nguyen
Xem chi tiết
TFBoys
9 tháng 8 2017 lúc 19:37

Sửa đề

\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)