hình bình hành ABCD.Gọi K và I lần lượt là trung điểm của AB và CD.M và N lần lượt là giao điểm của AI và CK với BD.CMR:
a,tam giác AND bằng tam giác CNB
b, góc MAC bằng góc NCA và AI//KC
c,DM=MN=NB
Cho hình bình hành ABCD. K,I lần lượt là trung điểm AB và CD. M,N lần lượt là giao điểm AI và CK với BD
Chứng minh:
a) Tam giác ADM = tam giác CBN
b) Góc MAC= góc NCA và IN//CN
c) DM=MN=NB
Cho hình bình hành ABCD. Gọi K,I là trung điểm của các cạnh AB và CD. Gọi M và N lần lượt là giao điểm của AI và CK với BD.
Chứng minh:
Tam giác ADM = tam giác CBN
Góc MAC = Góc NCA và IM // CN
DM = MN = NB
cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) tam giác ADM=CBN b) góc ADM=NCA và IM//CN
Giúp mình với!
Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của AB và CD, M và N là giao điểm của AI và CK với BD
a) Chứng minh : AI song song với CK
b) Chứng minh DM=MN=NB
a ) AK = 1/2 AB
CI = 1/2 CD
Mà AB //= CD nên AK //= CI suy ra
AKCI - hình bình hành
Nên AI // CK
b ) Xét t/g DNC có :
I là trung điểm CD mà IM // NC
=> IM là đường trung bình của t/g DNC
=> MD = MN ( 1 )
Xét t/g ABM có :
K là trung điểm AB mà KN // AM
=> KN là đường trung bình của t/g ABM ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB
Bài 3. Cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của các cạnh AB và CD, M và N là giao điểm của đường thẳng AI và đường thẳng CK với đường thẳng BD.
a) Chứng minh: AI // CK .
b) Chứng minh: DM = MN = NB
a: AB//CD
mà I∈AB
và K∈CD
nên AI//CK
a) Ta có: AK = 1212 AB
IC = 1212 DC
mà AB = DC (vì ABCD là hình bình hành)
=> AK = IC
=> AK // IC (vì AB // DC)
=> AKCI là hình bình hành
=> AI // KC
b) Xét ΔABMΔABM có:
AK = KB (gt)
AM // KN (vì AI // KC)
=> BN = MN (1)
Xét ΔDNCΔDNC có:
DI = IC (gt)
IM // CN (vì AI // KC)
=> DM = MN (2)
Từ 1 và 2 =>DM=MN=NB
Cho hình bình hành ABCD. Gọi I, K lần lượt là trung điểm của các cạnh AB và CD, M và N là giao diểm của AI và CK với BD.
a) CM: AI // CK
b) CM: DM = MN = NB
cho hình bình hành ABCD có K là trung điểm AB,I là trung điểm CD.BD lần lượt cắt AI và CK tại M và N. Gọi O là giao điểm của hai đường chéo AC và BD.
a)Tứ giác AKID,BKIC,AKCI là hình gì
b)c/m DM=MN=NB
c)I,O,K thằng hàng
d)AI cắt DK tại E,BI cắt CK tại F, c/m KEIF là hình bình hành và FE =AK
cho hình bình hành ABCD.Gọi E và F lần lượt là trung điểm của AB và DC.Đường chéo BD lần lượt cắt các đoạn thẳng AF,EC tại M và N.Chứng minh
a)DM=MN=NB
b)Đoạn thẳng EF đi qua trung điểm của đoạn thẳng MN.
c)M là trọng tâm tam giác ADC
huhuu giúp mìnnn
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
Suy ra: DM=MN(1)
Xét ΔABM có
E là trung điểm của AB
EN//AM
Do đó: N là trung điểm của BM
Suy ra: BN=NM(2)
Từ (1) và (2) suy ra DM=MN=NB
Cho tam giác ABC cân tại A. Trên canh AB và AC lần lượt lấy các điểm M và N sao cho BM = CN
a, Chứng minh tam giác BMC = tam giác CNB
b, Chứng minh góc ABN = góc ACM
c, Chứng minh MN // BC
d, Gọi O là giao điểm của BN và CM. I là trung điểm của BC. Chứng minh ba điểm A, O, I thẳng hàng.
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng