TÌm số nguyên tố p sao cho p+6, p+8, p+12 và p+14 đếu là các số nguyên tố
b. Tìm số nguyên tố p sao cho p + 6, p + 14, p + 12 và p + 8 đều là các số nguyên tố.
p=5
vì 5+6=11 là số nguyên tố
5+14=19 là số nguyên tố
5+12=17 là số nguyên tố
5+8=13 là số nguyên tố
tk nha
Tìm các số nguyên tố p sao cho các số sau cũng là số nguyên tố: p+6 , p+8 , p+12 , p+14
Mình Nghĩ Câu Này Cũng Dễ Chứ Đâu Khó Đâu
Mình Không Cố í xúc phạm đâu
Câu này là p = 5
Câu Này Dễ Nên Mình Không Giải Chi Tiết Nha Bạn
Tìm số nguyên tố p, sao cho các số p+2, p+6, p+8, p+12, p+14 cũng là số nguyên tố
Tìm số nguyên tố P sao cho P+6 ; P+8 ; P +12 và P +14 đều là số nguyên tố
Lời giải:
Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn)
Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.
Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.
Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.
Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.
Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=5$ là đáp án duy nhất.
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8,p+12 và p+14 đều là số nguyên tố
Tìm số nguyên tố p sao cho p+2, p+6, p+8, p+12, p+14 là các số nguyên tố.
nếu p = 2
=> p + 2 = 4 là hợp số ( loại )
nếu p = 3
=> 3 + 6 = 9 là hợp số ( loại )
nếu p = 5
thì 5 + 2 = 7 ( số nguyên tố )
5 + 6 = 11 ( số nguyên tố )
5 + 8 = 13 ( số nguyên tố )
5 + 12 = 17 ( số nguyên tố )
5 + 14 = 19 ( số nguyên tố )
=> p = 5
Tìm số nguyên tố p, sao cho các số sau cũng là số nguyên tố: p+2, p+6, p+8, p+12, p+14
Thử `p=2`
`=>p+2=4(HS)`
`=>p=2`(loại).
Thử `p=3`
`=>p+12=15(HS)`
`=>p=3`(loại).
Thử `p=5`
`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}
`=>p=5(TM)`
Nếu `p>5` mà p là SNT
`=>p cancel{vdost} 5`
`=>p=5k+1,5k+2,5k+3,5k+4`
`+)p=5k+1=>p+14=5k+15 vdots 5`
`=>p=5k+1` (loại).
`+)p=5k+2=>p+8=5k+10 vdots 5`
`=>p=5k+2` (loại).
`+)p=5k+3=>p+12=5k+15 vdots 5`
`=>p=5k+3` (loại).
`+)p=5k+4=>p+6=5k+10 vdots 5`
`=>p=5k+4` (loại).
Vậy `p=5`
Tìm các số nguyên tố P sao cho sao cho các số sau đều là số nguyên tố:
a, P+10 và P+14
b, P+8 và P+10
c, P+2, P+8, P+12, P+14
d, P+6, P+8, P+12, P+14
xét p = 2 =>p+10 là hợp số =>ko tm
xét p = 3=>p+10=13,p+14=17 tm
xét p>3 => p=3k+1,p=3k+2
- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm
- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm
a) P+10 và P+14
+ Nếu P=2=> P+10=12; P+14=16(loại)
- Nếu P=3=> P+10=13; P+14=17(tm)
Nếu P>3=> P có dạng 3k;3k+1;3k+2
+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)
+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)
+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)
Vậy với P=3 thì P+10 và P+14 là số nguyên tố.
Các phần còn lại bn làm tương tự
Thấy đúng thì tk nha, thanks nhìu ^_^
Tìm số nguyên tố P sao cho P+2 ; P+6 ; P+8 ; P+12 ; P+14 cũng là các số nguyên tố.
Với p là số nguyên tố ta xét các giá trị của p
• p=2=> p+2;p+6;p+8;p+12;p+14 đều là hợp số vì đều chia hết cho 2 (loại)
•p=3=> p+6=3+6=9 là hợp số (loại)
• p=5. Ta có
p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+12=5+12=17
p+14=5+14=19
Các kết quả trên đều là số nguyên tố nên p=5 (chọn)
Với p khác 5 và p>5 => p=5k+1;5k+2;5k+3;5k+4 (k thuộc N*)
• p=5k+1=> p+14=5k+1+14=5k+15 là hợp số vì chia hết cho 5 (loại)
• p=5k+2=> p+8=5k+2+8=5k+10 là hợp số vì chia hết cho 5 (loại)
• p=5k+3=> p+2=5k+3+2=5k+5 là hợp số (loại)
• p=5k+4=> p+6=5k+4+6=5k+10 là hợp số (loại)
Vậy p=5
Xét p = 2 thì p+2 = 2+2 =4 là hợp số [ loại ]
Xét p = 3 thì p+6 = 3+6 = 9 là hợp số [ loại ]
Xét p = 5 thì p+2 ; p+6 ; p+8 ; p+12 ; p +14 đều là SNT [ thỏa mãn ]
Xét p > 5 Thì có các dạng : 5k+1 ; 5k+2 ; 5k +3 ; 5k+4
Nếu p = 5k+1 thì p+14 = 5k+1+14 = 5k+15 là hợp số mà p> 5 nên p = 5k+1 là hợp số [ loại ]
Nếu p = 5k+2 thì p+ 8 = 5k+2+8 = 5k+10 là hợp số [ loại ]
Nếu p = 5k +3 thì p+ 12 = 5k+3+12 = 5k+ 15 là hợp số [ loại ]
Nếu p = 5k+4 thì p + 6 = 5k+6=4+6 = 5k+10 là hợp số [ loại ]
NHư trên trường hợp p >5 không có số nào thỏa mãn
Vậy p = 5 thỏa mãn đề bài