3/ vẽΔABC vuông tại A . giả sứ B = 55 .tính C
hlep me ai đó giúp đi mà ;<
3/ vẽΔABC vuông tại A . giả sứ B = 55 .tính C
hlep me
Vì tam giác ABC vuông tại A (gt)
=> Góc A = 90 độ
Xét tam giác ABC ta có:
Góc A + Góc B + Góc C = 180 độ ( Tổng các góc của tam giác )
Hay 90 độ + 55 độ + Góc C = 180 độ
=> 145 độ + Góc C = 180 độ
=> Góc C = 180 độ - 145 độ
=> Góc C = 35 độ
1/ vẽ tam giác . Giả sứ ABC = \(80^o\) , ACB = \(40^o\). hai tia phân giác kẻ từ đỉnh B và đỉnh C cắt tại I . tính IBC + và tính BIC
2/ vẽ \(\Delta ABC\). Giả sử A = 60. hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại điểm I
a/ so sánh \(\widehat{IBC}\) + \(\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b/ tính BIC
3/ vẽ\(\Delta ABC\) vuông tại A . giả sứ B = 55 .tính C
4/ \(\Delta AHC\) vuông ở H , có đường phân giác CF . giả sử A = 32
1/ tính ACH và HCF 2/ tính HFC
Một viên quan nước Tấn đi sứ sang Tề ,bị vua Tề tuyên phạt án tử hình và bị hành quyết chém đầu hoặc treo cổ .Trước khi tử hình nhà vua cho sứ giả được nói một câu nếu đúng thì chém đầu , nếu sai thì bị treo cổ .Sư giả nói một câu , nhờ đó mà thoát chết .Hỏi sứ giả đó nói câu gì ?
sứ giả đó nói câu :
-toi sẽ bị treo cổ
Một viên quan nước Tấn đi sứ sang nước Tề bị vua nước Tề xử tội chết. Trước khi hành quyết, nhà vua cho vị sứ giả được nói một câu và mỉm cười giao hẹn: " Nếu nói đúng sẽ chém đầu, nếu nói sai sẽ mang treo cổ". Vị sứ giả bèn nói một câu và nhờ câu đó mà thoát chết.
Bạn hãy cho biết câu nói của vị sứ giả đó như thế nào?
ông nói tôi bị treo cổ
mà nói đúng thì ông bị chém đầu, ông lại nói bị treo cổ là đúng
=> ông k bị làm sao.
Cho tam giác ABC cân tại A. M là trung điểm của BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I
a, CM: AE=AI
b, CM: AM là đường trung trực của đoạn thẳng EI
c, CM: EI//BC
d, Giả sử AB = 15cm, BC=18cm. Tính độ dài AM và ME
a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.Cho tam giác ABC cân tại A. M là trung điểm của BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I
a, CM: AE=AI
b, CM: AM là đường trung trực của đoạn thẳng EI
c, CM: EI//BC
d, Giả sử AB = 15cm, BC=18cm. Tính độ dài AM và ME
a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cmXét \(\Delta\)ABM và \(\Delta\)ACM có:
AB = AC
\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)
AM chung
=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)
mà \(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o
Do đó AM \(\perp\) BC
=> \(\Delta\)ABM vuông tại M
Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:
AB2 = AM2 + BM2
=> 152 = AM2 + 92
=> AM = 12cm
bài 1 : cho tam giác ABC vuông tại A có góc C = 3 độ ; tia phân giác của góc A cắt BC tại D . Kẻ AH vuông góc với BC ( H thuộc BC )
a, tính góc ADH
b, so sánh góc HAD và góc HAB
c, so sánh góc ABC và góc HAC
BÀI 2 : cho tam giác ABC có góc A = 80 độ ; góc B = 40 độ . tia phân giác của góc C cắt AB tại D . tính góc CDB ; góc CDA
CÁC BẠN KẺ HÌNH GIÚP MK NỮA NHÉ NHANH LÊN MK ĐANG CẦN GẤP ai giúp mình với nhanh lên đi mà
Cho 4 điểm A,B,C,D trong đó có 3 điểm A,B,C thẳng hàng và điểm A nằm giữ 2 điểm B và C
a) Vẽ các tia DA,DB,DC
b) Vẽ đường thẳng đi qua điểm B và cắt tia DA tại E và cắt tia DC tại F
c) Giả sử AB= 2 cm AC= 3cm . Tính BC
giúp mik với mọi người ơi ai nhanh mk sẽ tick 3 cái
cho tam giác ABC vuông tại A , đường cao AH , phân giác BD . gọi M là giao điểm của AH và BD.
a) CMR tam △BAC ∼ △BHA
b) tính độ dài đoạn BC,AH,HB,HC . Biết AB=3 , AC=4
c) CMR : AM.AD=HM.CD
me cần gấp ai giúp me với =((
a.
Xét hai tam giác BAC và BHA có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)
b.
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)
\(CH=BC-BH=\dfrac{16}{5}\)
c.
Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:
\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)
Áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)
Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)
(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)