a) Vì \(\Delta\)ABC cân tại A
=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)
hay \(\widehat{EBM}\) = \(\widehat{ICM}\)
Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:
BM = CM (suy từ gt)
\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)
=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)
=> EB = IC (2 cạnh t/ư)
Ta có: AE + EB = AB
AI + IC = AC
mà EB = IC; AB = AC => AE = AI
b) Gọi giao điểm của AM và EI là D.
Vì \(\Delta\)EBM = \(\Delta\)ICM (câu a)
=> EM = IM (2 cạnh t/ư)
Xét \(\Delta\)AEM và \(\Delta\)AIM có:
AE = AI (câu a)
AM chung
EM = IM (c/m trên)
=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)
=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)
hay \(\widehat{EAD}\) = \(\widehat{IAD}\)
Xét \(\Delta\)ADE và \(\Delta\)ADI có:
AE = AI (câu a)
\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)
AM chung
=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)
=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)
Do \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.