làm thế nào để xác định x nhỏ hơn nghiệm l và lớn hơn nghiệm
làm thế nào để xác định x nhỏ hơn nghiệm l và lớn hơn nghiệm
cho PT: \(kx^2-2\left(k+1\right)x+k+1=0\)
a, xác định k để PT có nghiệm
b, xác định k để PT có 2 nghiệm cùng dương
c, xác định k để PT có 2 nghiệm cùng âm
d, xác định k để PT có 2 nghiệm thỏa mã cùng lớn hơn 2
e, xác định k để PT có 2 nghiệm thỏa mãn cùng nhỏ hơn 1
f, xác định k để PT có 1 nghiệm lớn hơn 3 và 1 nghiệm nhỏ hơn 3
vẽ độ thị hàm số : y= f(x)={-x khi x nhỏ hơn và bằng 0; -x^2+2x khi x lớn hơn 0
dựa vào đồ thị, xác định m để phương trình: f(x)=m có nghiệm 3
ĐỪNG CÓ NÓI ĐÂY LÀ BÀI KO GIẢI ĐƯỢC
Bài dễ thế này hỏi gì nữa thớt?
Vẽ đồ thị ra là làm được ngay.
tôi học lớp 7 đươc chưa cái thằng quỷ
xác định m để phương trình (m - 1)x2 + (2 - m)x - 1 = 0 có 1 nghiệm lớn hơn 2, 1 nghiệm nhỏ hơn 2
Xác định m để phương trình x^2 + 2(m + 3) x + 4m +12 = 0 có hai nghiệm phân biệt lớn hơn –1.
Xác định m để phương trình x^2 + 2(m + 3) x + 4m + 12 = 0 có hai nghiệm phân biệt lớn hơn -1
\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)
Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)
Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)
TÌm điều kiện của m để phương trình
x2+ 2(m+1) x + 2m -11=0
a) Có 1 nghiệm lớn hơn 1 và 1 nghiệm nhỏ hơn 1
b) Có 2 nghiệm nhỏ hơn 2
\(\Delta=4\left(m+1\right)^2-4\cdot\left(2m-11\right)\cdot1=4m^2+8m+4-8m+44=4m^2+48>0\Rightarrow\)Phương trình có hai nghiệm phân biệt
a) x1\(=\frac{-b-\sqrt{\Delta}}{2a}\) x2\(=\frac{-b+\sqrt{\Delta}}{2a}\)
Vì x1 < x2 nên theo yêu cầu đề x1 < 1; x2 > 1
* x2>1 \(\Rightarrow\frac{-b+\sqrt{\Delta}}{2a}>1\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\Delta>\left(2a+b\right)^2=4a^2+4ab+b^2=4+4\cdot2\left(m+1\right)+4\left(m+1\right)^2\)
\(4\left(m+1\right)^2-4\left(2m-11\right)-4\left(m+1\right)^2-4-8\left(m+1\right)>0\Rightarrow-16m+56>0\Rightarrow-16m>-32\Rightarrow m>2\)tương tự với x1 : m>2
Vậy để pt có 1 nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1 thì m >2
b) x1<2
\(\Rightarrow\frac{-b-\sqrt{\Delta}}{2a}< 2\Rightarrow\sqrt{\Delta}>-\left(4a+b\right)\Rightarrow\Delta>\left(4a+b\right)^2=16a^2+b^2+8ab=16+4\left(m+1\right)^2+8\cdot2\left(m+1\right)\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m-11\right)-16-16\left(m+1\right)-4\left(m+1\right)^2>0\Rightarrow-24m>-12\Rightarrow m>\frac{1}{2}\)
Tương tự với x2 : m>1/2
Vậy để phương trình có hai nghiệm đều bé hơn 2 thì \(2\ge m>\frac{1}{2}\)
Xin lỗi bạn mình mới học lớp 5 thôi
Thông cảm nha
Xin lỗi bạn nhiều
Tìm điều kiện của m để phương trình
x2 + 2(m+1) x +2m-11=0
a) Có 1 nghiệm lớn hơn 1 và 1 nghiệm nhỏ hơn 1
b) Có 2 nghiệm nhỏ hơn 2
Cho phương trình: x2+(2+m)x+2m=0. Xác định m để phương trinh có 2 nghiệm x1, x2 đều nhỏ hơn 2.