Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 23:54

Xét tứ giác DEBF có 

DE//BF

DE=BF

Do đó: DEBF là hình bình hành

Phạm Kim Tuyến
Xem chi tiết
Phạm Kim Tuyến
1 tháng 11 2021 lúc 19:31

Help me please 😭

Minh Anh
1 tháng 11 2021 lúc 19:34

tham khảo

a) Ta có: (F là trung điểm của AD)

(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: (gt)

mà (F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)

hay 

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có (cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

⇒(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên (hai góc đồng vị)

hay 

Ta có: tia FE nằm giữa hai tia FB,FD

nên 

(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên (hai góc trong cùng phía bù nhau)

hay (2)

Từ (1) và (2) suy ra 

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có (cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 22:02

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

Thanhsuxii
Xem chi tiết
Yen Nhi
1 tháng 1 2021 lúc 23:43
Bạn tham khảo lời giải của tớ!

Bài tập Tất cả

Khách vãng lai đã xóa
Nguyễn Văn A
Xem chi tiết
Akai Haruma
9 tháng 11 2021 lúc 18:39

AEFD và BCFE có phải hình bình hành đâu bạn? Bạn coi lại đề.

Khang Trần
Xem chi tiết
Khang Trần
13 tháng 11 2021 lúc 15:22

giúp mình đi mình đang gấp

Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 22:28

Xét ΔBDC có

F là trung điểm của BC

I là trung điểm của BD

Do đó: FI là đường trung bình của ΔBDC

Suy ra: FI//DC và FI=DC/2(1)

Xét ΔADC có

E là trung điểm của AD

I là trung điểm của AC

Do đó: EI là đường trung bình của ΔADC
Suy ra: EI//DC và EI=DC/2(2)

Từ (1) và (2) suy ra E và F đối xứng với nhau qua I

Anh Nguyễn Tú
Xem chi tiết
i love Vietnam
15 tháng 11 2021 lúc 9:42

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

i love Vietnam
15 tháng 11 2021 lúc 9:54

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)

Bùi Thế Tuấn
Xem chi tiết
Đặng Đức
27 tháng 10 2021 lúc 19:24

không có hình kìa

làm sao mà trả lời được

 

Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:30

b: Xét tứ giác EBFD có 

ED//BF

ED=BF

Do đó: EBFD là hình bình hành

Uyen Do
Xem chi tiết
Seu Vuon
18 tháng 12 2014 lúc 18:47

Dễ thấy SABCD = 2SADC (1)

Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)

Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)

Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

Trần Phươnganh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 0:48

Ta có: AE+EB=AB

CF+FD=CD

mà AB=CD

và AE=CF

nên EB=FD

Ta có: AH+HD=AD

CG+BG=CB

mà AD=CB

và HD=BG

nên AH=CG

Xét ΔAHE và ΔCGF có 

AH=CG

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔAHE=ΔCGF

Suy ra: HE=GF

Xét ΔEBG và ΔFDH có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BG=DH

Do đó: ΔEBG=ΔFDH

Suy ra: EG=FH

Xét tứ giác EHFG có

EG=FH

EH=FG

Do đó: EHFG là hình bình hành