Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Thùy
Xem chi tiết
Nguyễn Lê Na
Xem chi tiết
Trịnh Thanh Trúc
Xem chi tiết
binh pham
Xem chi tiết
Trần Anh Hoàng
23 tháng 3 2022 lúc 14:15

Tham khảo:

a) Xét 2 tam giác ABD và EBD có 

BD cạnh chung

góc ABD = góc EBD ( gt )

-> = nhau ( ch-gn)

b) Vì tam giác ABD = tam giác EBD 

=> AB = EB ( 2 cạnh t/ứng )

=> t/giác ABE cân tại A 

Mà ABE = 60 độ ( gt )

=> Tam giác ABE đều

Kiên NT
Xem chi tiết
Phương Cát Tường
Xem chi tiết
meme
25 tháng 8 2023 lúc 9:59
Để chứng minh MN = AD.sin(BAC), ta sẽ sử dụng định lí sin.

Trong tam giác AMN, ta có:

MN = AN.sin(∠MAN) (định lí sin)

Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:

MN = AD.cos(∠CAB).sin(∠BAC)

Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:

cos(∠CAB).sin(∠BAC) = sin(∠BAC)

Áp dụng định lí sin, ta có:

cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)

Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:

sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)

Vậy, MN = AD.sin(BAC).

Như vậy, đã chứng minh hai điều kiện trên.

nguyễn gia hân
Xem chi tiết
thu hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 21:54

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

huongpham
Xem chi tiết