Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng thị Hiền
Xem chi tiết
lê thị hương giang
22 tháng 10 2017 lúc 13:16

\(x^2+y^2+z^2+2x-2y-2z+3\)

\(=x^2+y^2+z^2+2x-2y-2z+1+1+1\)

\(=\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\)

\(=\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\)

Ta có :

\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)

\(\left(y-1\right)^2\ge0\) với mọi y \(\in R\)

\(\left(z-1\right)^2\ge0\) với mọi z \(\in R\)

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) với mọi x,y,z \(\in R\)

Hay \(x^2+y^2+z^2+2x-2y-2z+3\ge0\) với mọi x,y,z là các số thực

Nguyễn Bảo Anh
Xem chi tiết
Lý Bảo Thy
Xem chi tiết
Anime forever
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 2:09

Lời giải:

$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$

Ta thấy:

$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:

$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$

$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi 

$x\mathbb{Q}, y\in\mathbb{R}$

Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)

Hay $M$ là số dương (đpcm)

 

Lê Đức Mạnh
Xem chi tiết
Nguyễn Văn Đức
Xem chi tiết
Hoàng Minh Quân
Xem chi tiết
Thảo Phương
Xem chi tiết
ILoveMath
23 tháng 12 2021 lúc 16:28

\(2x\left(x-y\right)-3x+3y=2x\left(x-y\right)-\left(3x-3y\right)=2x\left(x-y\right)-3\left(x-y\right)=\left(x-y\right)\left(2x-3\right)\)

shoppe pi pi pi pi
Xem chi tiết