Chứng tỏ rằng với mọi x,y thì biểu thức
B= \(x^2+y^2+2x+2y+3>0\)
chứng tỏ rằng
x^2 + y^2 + z^2 + 2x -2y -2z + 3 > và = 0 với mọi số thực x, y , z
\(x^2+y^2+z^2+2x-2y-2z+3\)
\(=x^2+y^2+z^2+2x-2y-2z+1+1+1\)
\(=\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\)
\(=\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\)
Ta có :
\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)
\(\left(y-1\right)^2\ge0\) với mọi y \(\in R\)
\(\left(z-1\right)^2\ge0\) với mọi z \(\in R\)
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) với mọi x,y,z \(\in R\)
Hay \(x^2+y^2+z^2+2x-2y-2z+3\ge0\) với mọi x,y,z là các số thực
1) tính các biểu thức sau
a) 5x(2x^n-1-y^n)-2x^n-2(5x-y^3)+xy^3(5y^n-3-2x^n-3) (với x thuộc N và x>=3)
b) 3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2) (với x thuộc N và n>=2)
2) rút gọn biểu thức rồi tính giá trị
x^10-2006x^9+2006x^8-2006x^7+2006x^6+...-2006x+2006 biết x=2005
3) chứng tỏ rằng biểu thức sau luôn luôn không âm với mọi giá trị của x và y
A=x^2+y^2-(y(3x-2y)-(x(x+2y)-y(y-x)))
chứng minh rằng nếu x+y+1=0 thì giá trị các đa thức sau là hằng số.
a. x^3+x^2y-xy^2-y^3+x^2-y^2+2y+3
b. x^3+2x^2y+xy^2+x^2+xy+x+y=5
XIN MỌI NGƯỜI GIÚP GIÙM Ạ, CẢM ƠN MỌI NGƯỜI RẤT NHIỀU
Chứng tỏ rằng với mọi x thuộc Q thi giá trị biểu thức M=\(\dfrac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
là số dương
Lời giải:
$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$
Ta thấy:
$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:
$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$
$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi
$x\mathbb{Q}, y\in\mathbb{R}$
Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)
Hay $M$ là số dương (đpcm)
Câu 9: Chứng tỏ với mọi giá trị x,y thuộc Q thì giá trị của biểu thức sau luôn luôn là số dương :
M=3[x2+1]+x2y2+y2-2 / [x+y]2+5
Câu10:Tìm cặp số nuyên dương x;y để biểu thức sau có giá trị dương
A=2x+2y-3 / x+y
Cho 2 đa thức
P= \(x^3-2x^2y+x^2+1\)
Q=\(y^4-3x^3+2x^2y+2x^3+2\)
Chứng tỏ rằng trong hai đa thức P, Q luôn tồn tại một đa thức nhận giá trị không âm với mọi số thực x, y.
Giúp với.
Chứng tỏ rằng giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến . A) 2 ( 2x + x^2 ) - x^2 ( x+2 ) + x( x^3 - 4x+ 3 ) B) z ( y-x ) + y ( z-x ) + x ( y+2 ) - 2yz + 100 . C) 2y ( y^2 + y + 1 ) - 2y ^2 ( y +1 ) - 2 ( y + 10 )
phân tích đa thức thành nhân tử 2x(x-y)-3x+3y
thực hiện phép tính (x-9/x^2-9)-(3/x^2+3x)
chứng tỏ rằng 2x-x^2-0<0 với mọi giá trị của x
\(2x\left(x-y\right)-3x+3y=2x\left(x-y\right)-\left(3x-3y\right)=2x\left(x-y\right)-3\left(x-y\right)=\left(x-y\right)\left(2x-3\right)\)
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)