Lời giải:
$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$
Ta thấy:
$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:
$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$
$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi
$x\mathbb{Q}, y\in\mathbb{R}$
Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)
Hay $M$ là số dương (đpcm)