cm bdt \(x^2+x\sqrt{2}+1>0\)
Tai sao ap dung bdt cosi thi
\(\sqrt{x+x^2}+\sqrt{x-x^2}\le x+1\)
ĐK: \(0\le x\le1\)
\(VT=\sqrt{x\left(x+1\right)}+\sqrt{x\left(1-x\right)}\le\frac{x+x+1+x+1-x}{2}=\frac{2x+2}{2}=x+1\)
Dấu "=" ko xảy ra
tiếng anh mà như toán vậy
cm bdt \(\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\left(a>b>0.\right)\)
\(\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=\frac{4b\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}\)
\(=\frac{\left(2\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}=\frac{\left(2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\right)^2}{8b}=\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}\)
vì \(0< =\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\Rightarrow2\sqrt{ab}< =a+b\Rightarrow2\sqrt{ab}-2b< =a+b-2b\)
\(\Rightarrow2\sqrt{ab}-2b< =a-b\)
dấu = xảy ra khi và chỉ khi a=b mà a>b(giả thiết)\(\Rightarrow2\sqrt{ab}-2b< a-b\Rightarrow\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}< \frac{\left(a-b\right)^2}{8b}\)
\(\Rightarrow\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\left(đpcm\right)\)
cm bdt
x+x/2>=2
giúp mk nha
Ta có :
x+x/2>=2
x+x=2*2
x+x=4
Vậy x chính là 2 vì 2+2=4
\(P=\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-7}{x-\sqrt{x}-2} \) với x\(\ge\)0;x\(\ne\)44
a) CM \(P=\dfrac{1}{\sqrt{x}-2}
\)
b) tìm giá trị lớn nhất của P
a: \(P=\dfrac{\sqrt{x}+1-2\sqrt{x}+4+2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\)
b: căn x+1>=1
=>P<=1
Dấu = xảy ra khi x=0
cho x,y thoa man 0<x<1, 0<y<1 CM\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}=< \frac{3\sqrt{3}}{2}\)
Tim Min \(A=\sqrt{x}+\sqrt{2-x}\)
Dau tien ta chung minh BDT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)
That vay 2 ve luon duong nen \(\left(\sqrt{A}+\sqrt{B}\right)^2\ge\left(\sqrt{A+B}\right)^2\)
<=> \(A+B+2\sqrt{AB}\ge A+B\)
<=> \(2\sqrt{AB}\ge0\) (dieu nay dung vi A va B luon duong hoac bang 0)
<=> \(AB\ge0\) day la dau bang cua BDT
Ap dung, ta co: \(\sqrt{x}+\sqrt{2-x}\ge\sqrt{x+2-x}=\sqrt{2}\)
Dau bang <=> \(x\left(2-x\right)\ge0\)
*TH1: \(x\ge0;2-x\ge0\Leftrightarrow0\le x\le2\)
*TH2: \(x\le0;2-x\le0\Leftrightarrow0\le x;x\ge2\Leftrightarrow x\in\)rong
Vay \(\sqrt{x}+\sqrt{2-x}\ge\sqrt{2}\Leftrightarrow0\le x\le2\)
khỏi cần
ta có \(A^2=2+2\sqrt{x\left(2-x\right)}\ge2\)
dấu = xảy ra khi x=4
Đây chắc là đăng cả lời giải để mấy bạn không biết làm chép luôn.Hay thật
A=\(\left(\frac{x+2}{x.\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\)\(:\frac{\sqrt{x}-1}{2}\)với x>0, x khác 1
a. Rút gọn A
b. cm 0<A<2
Cho 2 biểu thức
A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) - \(\dfrac{\sqrt{x}+5}{x-1}\) với x ≥ 0, x ≠ 1
a, CM B= \(\dfrac{2}{\sqrt{x}+1}\)
b, Tìm tất cả giá trị của x để biểu thức P=2AB + \(\sqrt{x}\) MIN
Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)
b.
\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)
Áp dụng BĐT Cô-si:
$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$
Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$
CM: -\(\frac{\sqrt{x}+1}{2\sqrt{x}+2}\) > 0