Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
1/Rút gọn
A=\(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{xy}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\left(\sqrt{x^3+x}\right)}\)(x>0; y>0; x#y)
B= \(\left(\frac{1}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right):\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)( x>0)
C=\(\left(\frac{x+1}{\sqrt{x}}+2\right).\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x\sqrt{x}+1\right)}\)(x>0)
D=\(\left(\frac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right):\left(x-1\right)-\frac{2}{\sqrt{x}-1}\)(x>=0; x#1)
giúp em với ạ em đang cần gấp ạ
Rút gọn:
\(A=\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) với \(x\ge0;x\ne1\)
\(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) với \(x>0;x\ne1\)
giải phương trình
1,\(x\sqrt{x}-x-2\sqrt{x}=0\)
b,\(x^2-2x-|x-1|-1=0\)
c,\(\frac{4}{x-4}+\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{1}{\sqrt{x}-2}\)
Cho \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\) với a>0; b>0
Tính \(B=\frac{2\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\)
B=\(\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
a) Rút gọn B
b) Chứng tỏ 0>B>2
Bài 1: CMR:
a, (4+\(\sqrt{3}\)). (4-\(\sqrt{3}\))=13
b, \(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=2\)
c, \(\frac{\sqrt{1}}{2+\sqrt{3}}+\frac{\sqrt{1}}{2-\sqrt{3}}=4\)
d, \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b\)(a>0, b>0, a≠b)
Bài 2: CMR:
a, \(\sqrt{a}+\frac{\sqrt{1}}{\sqrt{a}}\ge2\left(a>0\right)\)
b, a+b+\(\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\left(a,b>0\right)\)
c, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xyz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\left(x,y,z>0\right)\)
d, \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=-8\sqrt{3}\)
e, \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)=a-b(a>0, b>0, a≠b)
Bài 3: Tìm Min hoặc Max(nếu có):
a, \(\sqrt{x^2+9}\)
b, \(\frac{2}{\sqrt{x^2+1}}\)
c, 1-\(\sqrt{5+2x-x^2}\)
1. Rút gọn: \(P=\frac{3-2\sqrt{3}}{2-\sqrt{3}}+\frac{12}{5+3\sqrt{3}}\)
2. Cho biểu thức: \(P=\frac{x}{x-\sqrt{x}}+\frac{2}{x+2\sqrt{x}}+\frac{x+2}{x\sqrt{x}+2\sqrt{x}}+\frac{2 \left(x-\sqrt{x}\right)}{\sqrt{x}-1}\)
Tìm x để P < 0, khi đó hãy tìm giá trị nhỏ nhất của P
Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}\right):\frac{4}{2\sqrt{x}+2}\)
Tìm x để A > 0