Giải phương trình
a \(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
b \(x-6\sqrt{x}+9=0\)
c \(\sqrt{9x-27}+\sqrt{x-3}-\frac{1}{2}\sqrt{4x-12}=7\)
d \(3\sqrt{8x+4}-\frac{1}{3}\sqrt{18x+9}-\frac{1}{2}\sqrt{50x+25}+\sqrt[]{\frac{2x+1}{4}}=6\)
Giải các phương trình sau
a\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
b \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
c\(2x-x^2+\sqrt{6x^2-12+7}=0\)
d\(\left(x+1\right).\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
A= \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) \(\left(x\ge0;x\ne4\right)\)
B= \(\frac{x\sqrt{x}-1}{x-1}\) \(\left(x\ge0;x\ne1\right)\)
C= \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\) \(\left(x>0;x\ne1\right)\)
D= \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) \(\left(x\ge2\right)\)
E= \(\frac{x+\sqrt{x^2}-2x}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
1. giải phương trình chứa căn bậc 2
a) \(\sqrt{x^2-x+1}=x\)
b) \(\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}=0\)
c) \(\sqrt{x^4-2x^2+1}=x-1\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Giải phương trình \(\sqrt{2x+1}+\frac{2x-1}{x+3}-(2x-1)\sqrt{x^2+4}-\sqrt{2}=0\)
Giải phương trình:
a,\(\left(x+1\right)\sqrt{\frac{1}{x^3+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
b,\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
c,\(2-x^2=\sqrt{2-x}\)
d,\(x^3+1=2\sqrt[3]{2x-1}\)
e\(2\left(x^2+x+\frac{1}{2}\right)=\sqrt{4x+1}\)
f,\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
g,\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)