Tim Min Asqrt{x}+sqrt{2-x}Dau tien ta chung minh BDT sqrt{A}+sqrt{B}gesqrt{A+B}That vay 2 ve luon duong nen left(sqrt{A}+sqrt{B}right)^2geleft(sqrt{A+B}right)^2 A+B+2sqrt{AB}ge A+B 2sqrt{AB}ge0 (dieu nay dung vi A va B luon duong hoac bang 0) ABge0 day la dau bang cua BDTAp dung, ta co: sqrt{x}+sqrt{2-x}gesqrt{x+2-x}sqrt{2}Dau bang xleft(2-xright)ge0*TH1: xge0;2-xge0Leftrightarrow0le xle2*TH2: xle0;2-xle0Leftrightarrow0le x;xge2Leftrightarrow xinrongVay sqrt{x}+sqrt{2-x}gesqrt{2}Leftrightarrow0...
Đọc tiếp
Tim Min \(A=\sqrt{x}+\sqrt{2-x}\)
Dau tien ta chung minh BDT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)
That vay 2 ve luon duong nen \(\left(\sqrt{A}+\sqrt{B}\right)^2\ge\left(\sqrt{A+B}\right)^2\)
<=> \(A+B+2\sqrt{AB}\ge A+B\)
<=> \(2\sqrt{AB}\ge0\) (dieu nay dung vi A va B luon duong hoac bang 0)
<=> \(AB\ge0\) day la dau bang cua BDT
Ap dung, ta co: \(\sqrt{x}+\sqrt{2-x}\ge\sqrt{x+2-x}=\sqrt{2}\)
Dau bang <=> \(x\left(2-x\right)\ge0\)
*TH1: \(x\ge0;2-x\ge0\Leftrightarrow0\le x\le2\)
*TH2: \(x\le0;2-x\le0\Leftrightarrow0\le x;x\ge2\Leftrightarrow x\in\)rong
Vay \(\sqrt{x}+\sqrt{2-x}\ge\sqrt{2}\Leftrightarrow0\le x\le2\)