Cho (x+y+z)^2= x^2+y^2+z^2 CMR: 1/x^3+1/y^3+1/z^3= 3/xyz
Cho (x+y+z)^2= x^2+y^2+z^2 CMR: 1/x^3+1/y^3+1/z^3= 3/xyz
Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zy\right)=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)
\(\Rightarrow\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0\)( Chia 2 vế cho xyz )
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
Ta lại có : \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-\left(\frac{3}{x^2y}+\frac{3}{xy^2}\right)+\frac{1}{z^3}\)
\(=\left(-\frac{1}{z}\right)^3-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}\)
\(=-\frac{3}{xy}\cdot-\frac{1}{z}\)\(=\frac{3}{xyz}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm )
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Ta lại co:
\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Ta có:
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Ta lại có:
\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Cho (x+y+z)2= x2+y2+z2voi x,y,z la ba so khac 0
CMR:
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}$
1/x3+1/y3+1/z3=3/xyz
CMR bieu thuc sau khong phu thoc vao x,y,z
P= x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
Cho x^2-y=a ; y^2-z=b ;z^2-x=c
(a,b,c là các hằng số cho trước)
CMR :giá trị biểu thức sau không phụ thuộc vào x , y ,z
P=x^3(z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Đề sai nhé, \(\dfrac{z^2}{x+1}\) mới đúng nha
\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3}\left(\text{Svácxơ}\right)\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow x+y+z+3\le2\left(x+y+z\right)\)
Cho x,y,z>0 và xyz=1. cmr: x^2/(1+y) + y^2/(1+z) + z^2/(1+x) >= 3/2.?
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)
Áp dụng BĐT Cauchy:
\(x+y+z\geq 3\sqrt[3]{xyz}=3\)
Do đó:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!
Cho x, y, z >0 thỏa mãn : xyz=1. CMR :
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^2+x^2}}{xz}\ge3\sqrt{3}\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Giúp mình nhanh nha thanks!!!!!!!!!!!!!