Chứng minh rằng 2^2016 + 3^2017 + 4^2018 +5^2019 chia hết cho 5
chứng minh rằng 5^2017 + 5^2018 - 5^2019 chia hết cho 19
= 5^2017( 1+5-5^2)
=5^2017. (-19) chia hết cho 19
\(5^{2017}+5^{2018}-5^{2019}=5^{2017}\left(1+5-5^2\right)=5^{2017}\left(-19\right)⋮19\)
52017 + 52018 + 52019
= 52017 . ( 1 + 5 - 52 )
= 52017 . ( -19) \(⋮\)19
=> 52017 + 52018 - 52019 \(⋮\)19
Chứng minh:
4^2018 - 1 chia hết cho 3
5^2019 - 1 chia hết cho 4
4^2019 + 1 chia hết cho 5
5^2017 + 1 chia hết cho 6
giúp mk với nha mn
a, Ta có: \(4\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)
\(\Rightarrow4^{2018}-1⋮3\)
b, Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow5^{2019}-1⋮4\)
c, \(4\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)
\(\Rightarrow4^{2019}+1⋮5\)
d, \(5\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)
\(\Rightarrow5^{2017}+1⋮6\)
1. Vì \(4\) chia \(3\) dư \(1\)
\(\Rightarrow4^{2018}\) chia \(3\) dư \(1^{2018}=1.\)
\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)
a, Ta có: 4≡1(mod3)4≡1(���3)
⇒42018≡1(mod3)⇒42018≡1(���3)
⇒42018−1⋮3⇒42018−1⋮3
b, Ta có: 5≡1(mod4)5≡1(���4)
⇒52019≡1(mod4)⇒52019≡1(���4)
⇒52019−1⋮4⇒52019−1⋮4
c, 4≡−1(mod5)4≡−1(���5)
⇒42019≡−1(mod5)⇒42019≡−1(���5)
⇒42019+1⋮5⇒42019+1⋮5
d, 5≡−1(mod6)5≡−1(���6)
⇒52017≡−1(mod6)⇒52017≡−1(���6)
⇒52017+1⋮6
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Cho P (x) là đa thức bậc bốn và có hệ số của bậc cao nhất là 1. Biết P (2016)=2017 P (2017)=2018 P (2018)=2019 P (2019)=2020.
Chứng minh P (2020) là một số tự nhiên chia hết cho 5
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
Kí hiệu: (2n -1)!! = 1 . 3 . 5 . 7 . ... (2n -1)
và (2n)!! = 2 . 4 . 6 . 8. ... (2n)
Chứng minh rằng: (2017)!! + (2018)!! chia hết cho 2019
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
chứng minh 4+4^2+4^3+...+4^2017+4^2018+4^2019 chia hết cho 21
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Đúng thì nhớ tick cho mình nha,mình cảm ơn
Chứng minh rằng: 2018^2019-1 chia hết cho 2017
Ảnh đại diện của bn đẹp z
3, Cho n ϵ N chứng minh rằng :(n+2017)(n+2018)(n+2019)chia hết cho 3
n có 3 dạng tổng quát là: 3k ; 3k + 1 ; 3k + 2 (k ∈ N)
Trường hợp 1: n = 3k
Thay n = 3k vào n + 2019, ta có:
n + 2019 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2019)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (1)
Trường hợp 2: n = 3k + 1
Thay n = 3k + 1 vào n + 2018, ta có:
n + 2018 = 3k + 1 + 2018 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2018)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (2)
Trường hợp 3: n = 3k + 2
Thay n = 3k + 2 vào n + 2017, ta có:
n + 2017 = 3k + 2 + 2017 = 3k + 2019 = 3(k + 673)⋮3
=> (n + 2017)⋮3
=> (n + 2017)(n + 2018)(n + 2019)⋮3 (3)
Từ (1) ; (2) và (3) =>(n + 2017)(n + 2018)(n + 2019)⋮3 với mọi n ∈ N
Vậy (n + 2017)(n + 2018)(n + 2019)⋮3 (đpcm)