Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Mạnh
Xem chi tiết
Thanh Hoàng Thanh
28 tháng 1 2022 lúc 18:08

a) Xét tam giác ABC có: OE // BC (gt).

\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)

Xét tam giác ACD có: OF // CD (gt).

\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)

Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)

\(\Rightarrow\) EF // BD (định lý Talet đảo).

 

Incognito
Xem chi tiết
Nguyễn Tất Đạt
19 tháng 12 2018 lúc 16:02

C D B E A O P K M L Q S T R F N I x

a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)

Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD  (2)

Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).

b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"

Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ  = ^KML (Đối đỉnh)

Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)

Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)

Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)

Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)

Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).

c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)

Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.

Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF

Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM

Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)

Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD

Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID

Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)

Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)

Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI

Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)

Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.  

Nguyễn Tất Đạt
19 tháng 12 2018 lúc 20:08

Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(  

Lê Ngọc Anh Thư
Xem chi tiết
Thanh Hoàng Thanh
23 tháng 1 2022 lúc 9:34

a) Xét tam giác ADC: EG // DC (gt).

=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)

Xét tam giác ACB: HG // CB (gt).

=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)

Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)

Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)

=> HE // BD (Định lý Talet đảo).

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
13 tháng 9 2023 lúc 22:36

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:37

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

Law Trafargal
Xem chi tiết
didudsui
Xem chi tiết
nguyễn tiến đạt
Xem chi tiết
Chi thối
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 18:56

AE//BC

=>OA/OC=OE/OB

=>OA*OB=OE*OC

BG//AD

=>OA/OG=OD/OB

=>OA*OB=OG*OD

=>OE*OC=OG*OD

=>OE/OD=OG/OC

=>EG//DC

Xem chi tiết