Cho a/ b= c/d. Chứng minh:a/(3a+b) = c/ (3c + d)
cho a/b = c/d .Chứng minh
a) 3a-c/3b-d = 2a+3c/2b+3d
b) 3a-b/3a+d = 3c-a/3c+d
c) a^2 - b^2/c^2-d^2 = 2ab + b^2/2cd + d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a-c}{3b-d}=\dfrac{3bk-dk}{3b-d}=k\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=k\)
Do đó: \(\dfrac{3a-c}{3b-d}=\dfrac{2a+3c}{2b+3d}\)
c: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2ab+b^2}{2cd+d^2}=\dfrac{2\cdot bk\cdot b+b^2}{2\cdot dk\cdot d+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{2ab+b^2}{2cd+d^2}\)
cho a/b = c/d. chứng minh a/3a+b = c/ 3c+d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
Ta có :
\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ 1 và 2
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k,c=d.k\)
Ta có:
\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b.\left(3.k+1\right)}=\frac{k}{3.k+1}\) (1)
\(\frac{c}{3c+d}=\frac{d.k}{3.d.k+d}=\frac{d.k}{d.\left(3.k+1\right)}=\frac{k}{3.k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{b}{3c+d}\)
Cho a/b=c/d. Chứng minh a/3a+b=c/3c+d (3 cách)
\(Cách\)\(1:\)
\(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\text{a=bk;c=dk (1)}\)
Ta có:\(\frac{a}{3a+b}=\frac{c}{3c+d}\)(thay(1) vào)
Ta dc:\(\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)(tiếp tục thay 1 vào)
\(\frac{dk}{3dk+1}=\frac{k}{3k+1}\)
\(Từ\)\(\left(1\right);\left(2\right)\RightarrowĐPCM\)
\(Cách\)\(2:\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow3ac+ad=3ac+bc\)
\(\Rightarrow\text{a(3c+d)=c(3a+b)}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\left(ĐPCM\right)\)
Chúc bn hok tốt!!!
cho a/b= c/d
Chứng minh rằng; a/3a+b= c/3c+d
a/b=c/d => a/c=b/d
Mà a/c=3a/3c
=> 3a/3c=b/d
Áp dụng t/c của dãy tỉ số bằng nhau , ta có :
3a/3c=b/d = 3a+b/ 3c+d
Ta có a/c=3a+b/3c+d
=> a/3a+b=c/3c+4
vi a/b=c/d =>a/c=b/d ma a/c3a/3c=>b/d=3a/3c
ap dung t/c day ti so bang nhau ta co :
3a/3c=b/d/=3a+b/3c/d
ta co a/c =3a+b/3c+d
=>a/3a+b=c/3c+d
cách 1:
ta có:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b\cdot k;c=d\cdot k\left(1\right)\)
ta có:
\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
thay (1) vào a ta được:
\(\frac{b\cdot k}{3b\cdot k+b}=\frac{b\cdot k}{b\cdot\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
thay (1) vào c ta được:
\(\frac{dk}{3dk+d}=\frac{k}{3k+1}\left(2\right)\)
từ (1) và (2)\(\Rightarrowđpcm\)
cách 2:
ta có:
\(\frac{a}{b}=\frac{c}{d}\)
=>ad=bc
=>3ac+ad=3ac+bc3ac+ad=3ac+bc
=>a(3c+d)=c(3a+b)a(3c+d)=c(3a+b)
\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\left(đpcm\right)\)
a,cho 3a-b/3a+b=3c-d/3c+d cmr a/b=c/d
b,cho a/b=c/d cmr:b^2+d^2/a^2+c^2=bd/ac
a) Ta có\(\frac{3a-b}{3a+b}=\frac{3c-d}{3c+d}\)
=> (3a - b)(3c + d) = (3a + b)(3c - d)
=> 9ac + 3ad - 3bc - bd = 9ac - 3ad + 3bc - bd
=> 3ad - 3bc = -3ad + 3bc
=> 3ad + 3ad = 3bc + 3bc
=> 6ad = 6bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{b^2+d^2}{a^2+c^2}=\frac{b^2+d^2}{\left(bk\right)^2+\left(dk\right)^2}=\frac{b^2+d^2}{d^2k^2+d^2k^2}=\frac{b^2+d^2}{k^2\left(b^2+d^2\right)}=\frac{1}{k^2}\)(1);
\(\frac{bd}{ac}=\frac{bd}{bkdk}=\frac{1}{k^2}\left(2\right)\)
Từ (1)(2) => \(\frac{b^2+d^2}{a^2+c^2}=\frac{bd}{ac}\)(đpcm)
Cho a/b=c/d. Chứng minh a/3a-4b = c/ 3c-4d
Cho a/b=c/d CMR
a, 3a/b=3c/d
b, a+b/b=c+b/a
c, 3a+b/b= 3c+d/d
a ta có a/b=c/d=>ac=bd.nhân cả 2 vế vs 3 ta được 3ac=3bd=>3a/b=3c/d
c từ ý a có 3a/b=3c/d=>3a/b+1=3c/d +1(cộng cả hai vế vs 1).sau đó quy đồng được 3a+b/b=3c+d/d
còn ý b thì hình như bạn chép sai r thì phải,đề bài đúng chắc là như thế nầy a+b/b=c+a/a.nếu đề bài như thế thì sẽ giải giông ý c bạn nha!^^
Cho tỉ lệ thức: a/b = c/d. Chứng minh
a) 3a+5b/3a-5b = 3c+5d/3c-5d
\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}=\frac{3a+5b}{3c+5d}\)
=> Đpcm
Chúc bạn làm bài tốt
vì a/b= c/d
⇒ a+b/c+d=3a+5b/3c+5d=3a-5b/3c-5d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
3a+5b/3c+5d=3a-5b/3c-5d
⇒ 3a+5b/3a-5b=3c+5d/3c-5d (đpcm)
Cho a / 3b = b / 3c = c / 3d = d / 3a và a + b + c + d khác 0
Chứng minh rằng a = b = c =d
Theo dãy tỉ số (=) ta* có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
=> a = 1/3 . 3b = b (1)
=> b = 1/3 . 3c = c (2)
=> c = 1/3 . 3d = d (3)
Từ(1) (2) và (3) =. a = b= c =d => ĐPCM