Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Lê Phương Lan
Xem chi tiết
Phan anh Tu
Xem chi tiết
Cần học em của Ngu Học v...
Xem chi tiết
TBQT
4 tháng 7 2018 lúc 17:10

Giải:

Hình thang ABCD cân nên \(\widehat{BCD}=\widehat{ACD}\)

vì \(\widehat{ADC}-\widehat{A}=90^o\left(gt\right)\)

và \(\widehat{ADC}-\widehat{A}=90^o\)(góc ngoài)

Xét hai tam giác AHC và AHD ta thấy :

\(\widehat{H}=90^o\)

\(\widehat{ACH}=\widehat{A_1}\)(cmt)  

\(\Rightarrow\Delta AHC\)gần bằng \(\Delta DHA\)

Do đó \(\frac{AH}{DH}=\frac{HC}{AH}\Rightarrow AH^2=HC.HD\)

Cần học em của Ngu Học v...
4 tháng 7 2018 lúc 17:13

tks nha bạn

Lê Thị Hà Nhi
Xem chi tiết
Minh Nguyen
31 tháng 7 2020 lúc 21:26

A B C D H

Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật

Ta có : \(DH=DC-HC\)

                    \(=DC-AB\)  (Vì AB = HC)

                     \(=4-3\)

                      \(=1\left(cm\right)\)

Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)

\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o

\(\Rightarrow\)△AHD vuông cân tại H

\(\Rightarrow\)AH = DH

\(\Rightarrow\)AH = 1 (cm)

Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
31 tháng 7 2020 lúc 21:28

Xét hình thang ABCD có \(AB//CD\)(gt) có:

\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)

Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)

\(\Leftrightarrow4\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=45^0\)

\(\Rightarrow\widehat{A}=3.45^0=135^0\)

Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)

                                 \(\Leftrightarrow2\widehat{B}=180^0\)

                                 \(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)

Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)

\(\Rightarrow AB=CH=3cm\)(t/c)  \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)

Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)

\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)

Diện tích hình thang ABCD có:

\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)

Đáp số \(3,5cm^2\)

Học tốt 

Khách vãng lai đã xóa
BuBu siêu moe 방탄소년단
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2021 lúc 8:50

Kẻ đường cao BE ứng với CD \(\Rightarrow BE=4\left(cm\right)\)

Trong tam giác vuông BCE ta có:

\(\widehat{EBC}=90^0-\widehat{C}=90^0-45^0=45^0\)

\(\Rightarrow\widehat{EBC}=\widehat{C}\Rightarrow\Delta BCE\) vuông cân tại E

\(\Rightarrow EC=BE=4\left(cm\right)\)

Tứ giác ABED là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow AB=DE\)

Ta có:

\(AB+CD=10\left(cm\right)\)

\(\Leftrightarrow AB+DE+EC=10\)

\(\Leftrightarrow2AB+4=10\)

\(\Rightarrow AB=3\left(cm\right)\)

\(\Rightarrow DE=AB=3cm\Rightarrow CD=DE+EC=7\left(cm\right)\)

Nguyễn Việt Lâm
24 tháng 7 2021 lúc 8:51

undefined

Nguyễn
Xem chi tiết
Nguyễn
19 tháng 6 2018 lúc 17:43

Các bạn ơi, bài này mình làm đc rồi nhé!

Nguyễn Quang Minh
2 tháng 7 2019 lúc 21:33

làm hộ mình vs bạn

Cấn côn đô
24 tháng 7 2019 lúc 8:54

Ko bít làm

Sách Giáo Khoa
Xem chi tiết
Hiiiii~
21 tháng 4 2017 lúc 18:15

Bài giải:

Gọi E là giao điểm của AC và BD.

∆ECD có \(\widehat{C_1}=\widehat{D}\) (do \(\widehat{ACD}=\widehat{BDC}\)) nên là tam giác cân.

Suy ra EC = ED (1)

Tương tự EA = EB (2)

Từ (1) và (2) suy ra AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.


Lê Thị Ngọc Duyên
24 tháng 6 2017 lúc 22:33

\(\(\widehat{C_1}\)

Lê Thị Ngọc Duyên
24 tháng 6 2017 lúc 22:50

Nối A với C, B với D. Gọi M là giao điểm của AC và BD.

Ta có: \(\widehat{MDC}=\widehat{MCD}\left(gt\right)\)

=> \(\bigtriangleup\)MDC cân tại M

=> MC = MD (1)

Ta lại có: \(\widehat{MAB}=\widehat{MCD}\) (vì hai góc so le trong và AB//CD)

\(\widehat{CDM}=\widehat{ABM}\) (vì hai góc so le trongvà AB//CD)

\(\widehat{CDM}=\widehat{DCM}\left(gt\right)\) nên \(\widehat{MAB}=\widehat{MBA}\)

=> \(\bigtriangleup\) AMB cân tại M

=> MA = MB (2)

Lại có: \(AC=AM+MC\)

\(BD=BM+MD\)

Mà: \(AM=BM\left(cmt\right)\)

\(MC=MD\left(cmt\right)\)

\(\Rightarrow AC=BD\)

=> Hình thang ABCD cân.

ngọc hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 13:00

a) Xét ΔBAD và ΔABC có 

AB chung

\(\widehat{BAD}=\widehat{ABC}\)(gt)

AD=BC(gt)

Do đó: ΔBAD=ΔABC(c-g-c)

Suy ra: BD=AC(hai cạnh tương ứng)

Xét ΔADC và ΔBCD có 

AD=BC(gt)

AC=BD(cmt)

DC chung

Do đó: ΔADC=ΔBCD(c-c-c)

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)

\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD(cmt)

nên ABCD là hình thang(Định nghĩa hình thang)

Hình thang ABCD(AB//CD) có AC=BD(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)