Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tuệ Nga
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 20:12

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)

Làm gì mà căng
Xem chi tiết
Nguyễn Thị Mát
25 tháng 11 2019 lúc 21:26

\(ĐKXĐ:x\ge-1\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)

\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\) ta được 

\(a^2-a-20=0\Rightarrow\orbr{\begin{cases}a=5\\a=-4\left(l\right)\end{cases}}\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}-2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

\(\Rightarrow x=3\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
25 tháng 11 2019 lúc 21:34

b ) \(ĐKXĐ:x\ge0\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)

Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)

\(\Rightarrow a+a^2-2=0\Rightarrow\orbr{\begin{cases}a=1\\a=-2\left(l\right)\end{cases}}\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)

Mà \(x\ge0\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{cases}\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1}\)

Dấu " = " xảy ra khi và chỉ khi \(x=0\)

Khách vãng lai đã xóa
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
:vvv
Xem chi tiết
Akai Haruma
18 tháng 6 2021 lúc 23:02

Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134

Mouse
Xem chi tiết
Hải Anh
27 tháng 11 2019 lúc 22:04

a) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)

Đặt \(t=\sqrt{2x+3}+\sqrt{x+1}\left(t\ge0\right)\)

\(\Rightarrow t^2=3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}\)

\(\Rightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=t^2-3x-4\)

Pt <=> \(t=3x+t^2-3x-4-16\)

\(\Leftrightarrow t^2-t-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow3x+4+2\sqrt{\left(2x+3\right)\left(x+1\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+1\right)}=21-3x\)

\(\Leftrightarrow x^2-146x+429=0\)

...

Câu b giải tương tự

Khách vãng lai đã xóa
Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
24 tháng 11 2019 lúc 21:46

\(ĐKXĐ:...\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)

\(\Rightarrow a^2-4=3x+2\sqrt{2x^2+5x+3}\left(1\right)\)

Phương trình trở thành :

\(a=a^2-4-16\Leftrightarrow a^2-a-20=0\Rightarrow\orbr{\begin{cases}a=5\\a=-4\left(l\right)\end{cases}}\)

Thay vào (1)

\(\sqrt{2x+3}+\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

\(\Rightarrow x=3\)

Khách vãng lai đã xóa
Xem chi tiết