cho a,b,c≥o
a+b+c=1
CMR b+c≥16abc
cho a,b,c > 0 vaf a+b+c=1. CMR b+c≥ 16abc
cho ba so duong a,b,c biet a+b+c=1. cmr: b+c > hoac bang 16abc
\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)
Áp dụng \(\left(x+y\right)^2\ge4xy\)
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
ta có a>0,b+c>0
áp dụng Bất đẳng thức cosi ta có:
a+b+c>=2nhân với căn của a.(b+c)
=>(a+b+c)^2=4.a.(b+c)
Cho a,b,c là các số không âm thỏa mãn: a+b+c=1. CMR: b+c >= 16abc
Áp dụng BĐT cô-si, ta có
\(\left(a+b+c\right)^2\ge4a\left(b+c\right);\left(b+c\right)^2\ge4bc\)
Nhân từng vế, ta có \(\left(a+b+c\right)^2\left(b+c\right)^2\ge4a\left(b+c\right).4bc\Rightarrow b+c\ge16abc\left(ĐPCM\right)\)
dấu = xảy ra <=>\(\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)
^_^
Câu trả lời hay nhất: áp dụng BĐT Côsi cho hai số không âm có
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
p/s:kham khảo
Áp dụng: (a+b)^2 >= 4ab (note: x^y là x mũ y)
Có [a+(b+c)]2 >= 4a(b+c) do a+b+c=1
suy ra 1 >= 4a(b+c)
do b,c không âm, nhân 2 vế với (b+c) được:
b+c >= 4a(b+c)^2, lại có 4a(b+c)^2 >=16abc
theo tc bắc cầu: b+c >= 16abc
Dấu bằng xảy ra khi: a=b+c và b=c, với gt a+b+c=1 ==> a=1/2, b=1/4, c=1/4 (ĐPCM)
đều đúng hết
p/s:kham khảo
a)cho a,b,c >0
CMR (a+1)(b+1)(a+c)(b+c)>=16abc
b)cho x,y,z>0 CMR x+y/z+y+z/x+z+x/y>= 6
c)cho a>=1, b>=1 CMR a căn b-1+b căn a-1 <=ab
Cho a+b+c=1.cmr
a)a.b2 .c3 < 1:432
b) b+c > 16abc
c) (1-a)(1-b)(1-c) > 8abc
d)(a+b)(b+c)(a+c)> 8abc
e) a2 (1+b2)+b2(1+c2)+c2(1+a2) > 6abc
cho a;b;c >/0 và a+b+c=1 chứng minh rằng b+c>/16abc
Áp dụng bđt coossi ta dduowcj : \(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\Rightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)
Dấu = xảy ra khi a=b+c và b=c và a+b+c=1=>a=1/2;b=c=1/4
Cho a,b,c>=0 a+b+c=1 .Tính Mã P=16abc-b-c và Q=16ab-b-c
\(\left(a+b+c\right)^2\ge4a\left(b+c\right)\Rightarrow4a\left(b+c\right)\le1\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a.4bc=16abc\)
\(\Rightarrow16abc-b-c\le0\)
\(\Rightarrow P_{max}=0\) khi \(\left(a;b;c\right)=\left(1;0;0\right);\left(\frac{1}{2};\frac{1}{4};\frac{1}{4}\right)\)
Ta có \(1=a+b+c\ge a+b\Rightarrow a\le1-b\)
\(Q=16ab-b-c\le16ab-b\le16\left(1-b\right)b-b\)
\(Q\le-16b^2+15b=\frac{225}{64}-16\left(b-\frac{15}{32}\right)^2\le\frac{225}{64}\)
\(Q_{max}=\frac{225}{64}\) khi \(\left(a;b;c\right)=\left(\frac{17}{32};\frac{15}{32};0\right)\)
Cho a,b,c >0 và a+b+c = 1. Chứng minh b+c ≥ 16abc.
\(\left(b+c\right)\left(a+b+c\right)^2=\left(b+c\right)\left(a+\left(b+c\right)\right)^2\ge2\sqrt{bc}.4a\left(b+c\right)\)
\(\ge8\sqrt{bc}.a.2\sqrt{bc}\ge16abc\)
Dấu "=" xảy ra bạn tự kiếm nhé
u trả lời hay nhất: ta có (b+c)^2/4>=bc =>16abc=<16a(b+c)^2/4=4a(b+c) =4a (1-a)^2 =4a (1-a)(1-a) =(4a-4a^2)(1-a)
=(1-a) (1- (2a-1)^2)
Vì (2a-1)^2 >= 0 nên 1- (2a-1)^2 =< 1 suy ra (1-a) (1- (2a-1)^2) =<b+c
Vậy 16abc=< b+c
p/s :kham khảo
Bạn tham khảo thêm cách này nha
Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1)
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy )
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm)
bạn tự tìm dấu '=' nha
p/s : kham khảo
Cho a+b+c=1.cmr
a)a.b2 .c3 < 1:432
b) b+c > 16abc
c) (1-a)(1-b)(1-c) > 8abc
d)(a+b)(b+c)(a+c)> 8abc
e) a2 (1+b2)+b2(1+c2)+c2(1+a2) > 6abc