Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn An Nhi
Xem chi tiết
tth_new
20 tháng 1 2019 lúc 8:11

ĐK: \(x\ge-1;x\ne3\)

\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0

Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.

Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)

Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)

Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)

Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.

Harri Won
Xem chi tiết
Nguyễn Thị Hiền
30 tháng 10 2017 lúc 17:01

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Khách vãng lai đã xóa
Minaka Laala
Xem chi tiết
Trần Anh
Xem chi tiết
Đinh Đức Hùng
28 tháng 9 2017 lúc 20:57

ĐK : \(x>1\)

\(B=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x-1}}{x-1-x}+x\)

\(=x-2\sqrt{x-1}\)

Ta có : \(B=x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1=\sqrt{\left(x-1\right)^2}-2\sqrt{x-1}+1\)

\(=\left(\sqrt{x-1}-1\right)^2\ge0\)

Để B nhận gt nguyên dương \(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2\ne0\Leftrightarrow\sqrt{x-1}\ne1\Rightarrow x\ne2\)

Vậy \(x>1;x\ne2;x\in Z^+\) thì B nhận GT nguyên dương

Thắng  Hoàng
28 tháng 9 2017 lúc 20:39

Thánh chịu thôi@@@@@?

mai tiến dũng
28 tháng 9 2017 lúc 20:43

124154

Nữ hoàng sến súa là ta
Xem chi tiết

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#

songoku
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Isolde Moria
13 tháng 8 2016 lúc 18:12

\(B=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

B là số dương

<=> \(\frac{4}{\sqrt{x}-3}\) dương

 

<=> \(\sqrt{x}-3\inƯ_4\)

Mà \(\sqrt{x}-3\ge0\)

<=> \(\sqrt{x}-3\in\left\{1;2;4\right\}\)

<=> \(\sqrt{x}\in\left\{4;5;7\right\}\)

<=> \(x\in\left\{16;25;49\right\}\)

Vậy \(x\in\left\{16;25;49\right\}\)

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 18:10

Ta có : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) (điều kiện x khác 9 và x >=0)

Để B là số nguyên dương thì \(\sqrt{x}-3\) thuộc tập hợp ước dương của 4

\(\Rightarrow\sqrt{x}-3\in\left\{1;2;4\right\}\)

Tới đây bạn liệt kê ra nhé :) 

Nguyễn Hữu Triết
Xem chi tiết
Despacito
1 tháng 12 2017 lúc 18:29

\(\frac{\sqrt{x}+15}{\sqrt{x}+3}\)       với  \(x\ne9;x\ge0\)

có \(=\frac{\left(\sqrt{x}+3\right)+12}{\sqrt{x}+3}=1+\frac{12}{\sqrt{x}+3}\)

vì \(1\in Z\)

nên để biểu thức trên \(\in Z\)thì \(\frac{12}{\sqrt{x}+3}\in Z\)

\(\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(12\right)\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{1;2;3;4;6;12\right\}\)

vì \(\sqrt{x}+3\ge3\forall x\ge0\)

nên \(\left(\sqrt{x}+3\right)\in\left\{3;4;6;12\right\}\)

\(\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\sqrt{x}+3=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

\(\sqrt{x}+3=12\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)

Kết hợp với điều kiện  \(x\ne9;x\ge0\)và \(x\in Z\)

ta có \(x=\left\{0;1;81\right\}\)thì biểu thức trên nhận giá trị nguyên

Bastkoo
1 tháng 12 2017 lúc 18:48

\(\frac{\sqrt{x}+15}{\sqrt{x}+3}=\frac{\sqrt{x}+3+12}{\sqrt{x}+3}=\frac{\sqrt{x}+3}{\sqrt{x}+3}+\frac{12}{\sqrt{x}+3}=1+\frac{12}{\sqrt{x}+3}\)

=> \(\sqrt{x}\)+3 thuộc Ư(12) = {-1,-2,-3,-4,-6,-12,1,2,3,4,6,12}

Ta có bảng ;

\(\sqrt{x}+3\)-1-2-3-4-6-121234612
xko có x thõa mãnko có x thõa mãnko có x thõa mãnko có x thõa mãnko có x thõa mãnko có x thõa mãnko có x thõa mãnko có x thõa mãn01x ko thõa mãn đề bài3

Vậy có 3 số x thõa mãn đề bài là : x={0,1,3}

Zek Tim
Xem chi tiết