tính \(\left(a+b+c\right)^3\)
1/ Tính
A = \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Cho a+b+c=2016
Tính \(A=\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
A=a^3(b-c)+b^3(c-a)+c^3(a-b)/(a-b)(a-c)(b-c)
phân tích mẫu thức thành nhân tữ được (a-b)(b-c)(a-c)(a+b+c)
=>A=a+b+c=2016
bạn đổi dấu ở mẫu ý rồi quy đồng lên
rồi cộng vào phân tích là ra đấy
thông cảm máy mk ko thể trình bày rõ đc
chỉ nói ý đc thui:))
Hoàng Phúc giải chi tiết chỗ phân tích mẫu zùm mình ik...mk phân tích miết mà ko được
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Cho a+b+c\(a^3+b^3+c^3=3abc\) áp dụng tính B=\(\frac{\left(a^2-b^2\right)^3+\left(b^2-c^2\right)^3+\left(c^2-a^2\right)^3}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
cho \(a+b+c=0\) tính \(\dfrac{a^3+b^3+c^3}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Cho 3x-y=6 Tính giá trị biểu thức
A= \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)
Cho \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\)
và\(\left(a^3+b^3\right)\left(c^3+a^3\right)\left(b^3+c^3\right)=a^3b^3c^3\)
Tính abc.
tự làm là hạnh phúc của mỗi công dân.
cho abc=1. Tính giá trị biểu thức:
\(A=\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3-\left(a+b-c\right)^3\)
Cho abc=1 và a,b,c đôi một khác nhau
Tính giá trị P=\(\frac{2018+2019a^3}{a\left(a-b\right)\left(a-c\right)}+\frac{2018+2019b^3}{b\left(b-a\right)\left(b-c\right)}+\frac{2018+2019c^3}{c\left(c-a\right)\left(c-b\right)}\)