Chứng minh rằng:
a) ( a+b)^3 + (a-b)^3 = 2a( a^2 + 3b^2 )
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Cho a, b, c thỏa \(\frac{a}{2a+3b+4c}+\frac{3b}{6b+4c+a}+\frac{4c}{8c+a+3b}=\frac{3}{4}.\)
Chứng minh rằng: \(\frac{a^2}{2a+3b+4c}+\frac{9b^2}{6b+4c+a}+\frac{16c^2}{8c+a+3b}=\frac{a+3b+4c}{4}\)
Cho a>b>c>0. Chứng minh rằng :
\(a^3b^2+b^3c^2+c^3a^2>a^2b^3+b^2c^3+c^2a^3\)
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
k nha
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
chứn minh rằng
a) (a+b0^3+(a-b)^3=2a(a^2+3b^2)
b) (a+b)^3-(a-b)^3=2b(b^2+3a^2)
a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=0\)
\(\Leftrightarrow0=0\) ( đpcm) .
b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2a^3-6ab^2=0\)
\(\Leftrightarrow0=0\) ( luôn đúng )
Vậy đẳng thức được chứng minh.
Làm cách khác với "thị nở" :v.
a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2a\left(a^2+3b^2\right)\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
\(=2a\left(a^2+3b^2\right)=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2b\left(b^2+3a^2\right)\)
\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)=2b\left(b^1+3a^2\right)\)\(=2b^2\left(b^2+3a^2\right)=2b^2\left(b^2+3a^2\right)\)
Chỗ 2b2(b1+3a2) sửa b1 thành b2 nha. Còn cái nữa là do xuống hàng nên hơi khó nhìn :v
Bài 1. Cho a < b. So sánh: a/ 2a và a + b b/ - 3a và - 3b c/ 2a và 2b
Bài 2. Cho a < b. Chứng tỏ : a/ 2a – 3 < 2b – 3 b/ 3a + 1 < 3b + 1
Bài 3. a/ Cho m > n . Chứng minh : 2m – 3 > 2n - 4
b/ Cho a < b . Chứng minh: 2a - 3 < 2b + 5
Chứng minh bất đẳng thức a, 2a-3>2b-3( với a>b. b, -3a+5> -3b+2 ( với a
a) a > b
⇒ 2a > 2b (nhân hai vế với 2 > 0)
⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)
b) a < b
⇒ -3a > -3b (nhân hai vế với -3 < 0)
⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)
5 > 2
⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)
Từ (1) và (2) ⇒ -3a + 5 > -3b + 2
a)(a+b)^3+(a-b)^3=2a(a^2+3b^2)
b)(a+b)^3-(a-b)^3=2b(b^2+3a^2)
Bài toán trên phải chứng minh
a.\(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=o\)
\(\Leftrightarrow0=0\)(đpcm)
b.\(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3-6a^2b=o\)
\(\Leftrightarrow0=0\)luôn đúng
Vậy đẳng thức được chứng minh
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Đúng 3 Sai 0 Sky Blue đã chọn câu trả lời này.Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm