Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Nguyễn Minh Ngọc
Xem chi tiết
Mi Mi
Xem chi tiết

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

Nguyễn Khánh Duy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2021 lúc 22:53

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

pham minh tuan
Xem chi tiết
Trần Công Mạnh
31 tháng 7 2020 lúc 17:35

Bg

Ta có: n2 + 2n + 6 \(⋮\)n + 4     (n thuộc \(ℤ\))

=> 4n + 6 \(⋮\)n + 4

=> 4.(n + 4) - 10 \(⋮\)n + 4

Mà 4.(n + 4) \(⋮\)n + 4

=> 10 \(⋮\)n + 4

=> n + 4 thuộc Ư(10)

Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}

Lập bảng: 

n + 4 =1-12-25-510-10
n =

-3

-5-2-61-96-14

Vậy n = {-3; -5; ; -2; -6; 1; -9; 6; -14}

Khách vãng lai đã xóa
Xyz OLM
31 tháng 7 2020 lúc 17:44

Ta có n2 + 2n + 6 = n2 + 8n + 16 - 6n - 24 + 14

                             = (n + 4)2 - (n + 4) + 14

                             = (n + 4)(n + 4 - 1) + 14

Vì (n + 4)(n + 4 - 1) \(⋮\)n + 4 

=> 14 \(⋮n+4\Rightarrow n+4\inƯ\left(14\right)\)(Vì n nguyên)

=> \(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

=> \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)

\(⋮\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2018 lúc 15:19

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

Lê Phương Thủy
Xem chi tiết
Phạm Tiến Thành
26 tháng 4 2019 lúc 22:02

n2 là n2 hả bạn

Trịnh Hà Vi
Xem chi tiết
Lê Nguyễn Gia Bảo
31 tháng 3 2023 lúc 19:54

Ai có lời giải k ạ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2017 lúc 2:15