phân tích đa thức thành nhân tử:
a, \(12x^2-2x-15\)
b, \(36-12x+x^2\)
phân tích đa thức thành nhân tử x^4-2x^3-12x^2+12x+36
\(x^4-2x^3-12x^2+12x+36=x^4+x^2+36-2x^3+12x-12x^2-x^2\)
\(=\left(x^2-x-6\right)^2-x^2=\left(x^2-6\right)\left(x^2-2x-6\right)\)
Phân tích các đa thức sau thành nhân tử: a) x3 - 2x2 + x b) x2 – 2x – 15 c) 5x2y 3 – 25x3y 4 + 10x3y 3 d) 12x2y – 18xy2 – 30y2 e) 5(x-y) – y.( x – y) g)36 – 12x + x2 h) 4x2 + 12x + 9 i) 11x + 11y – x 2 – xy
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Phân tích đa thức thành nhân tử
4x^2-28xy+49y^2
x^2 + 8xy+16x^2y^2
36-12x+x^2
a) Ta có: \(4x^2-28xy+49y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)
\(=\left(2x-7y\right)^2\)
b) Ta có: \(x^2+8xy+16y^2\)
\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)
\(=\left(x+4y\right)^2\)
c) Ta có: \(x^2-12x+36\)
\(=x^2-2\cdot x\cdot6+6^2\)
\(=\left(x-6\right)^2\)
\(\left(2x-7y\right)^2\)
\(\left(6-x\right)^2\)
4x2 - 28xy + 49y2
= (2x)2 - 2.2x.7y + (7y)2
= (2x - 7y)2
x2 + 8x2y + 16x2y2 đề có bị thiếu không , nên mình bổ sung nhé
= x2 + 2.x.4xy + (4xy)2
= (x + 4xy)2
36 - 12x + x2
= 62 + 2.6.x + x2
= (6 + x)2
Chúc bạn học tốt
Bài 1:phân tích đa thức thành nhân tử a) 9x²y+15xy²-3x b) 3z(z-2)+5(2-z) c) x²+4xy-42²+4y² d) x²+2x-15 Bài 2:tìm x a) x²-4x=0 b) (2x+2)-4x(x+3)=9 c) x²-12x=-36 HELP MEEEEEEE !!!
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)
Bài 3 Tính nhanh
A, 892^2+892.216+108^2
B, 36^2+26^2-52.36
Bài 4 Phân tích đa thức sau thành nhân tử
X^3-2x^2+x
5(x-y)-y(x-y)
36-12x+x^2
4x^2+12x-9
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
Phân tích đa thức thành nhân tử:
a) x^4 - y^4
b) 4x^2+12x+9
c) 36-12x+x^2
a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)
\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(4x^2+12x+9\)
\(=\left(2x\right)^2+2.2x.3+9\)
\(=\left(2x+3\right)^2\)
\(36-12x+x^2\)
\(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)
phân tích đa thức thành nhân tử:
a. \(ax^2-a^2x-x+a\)
b. \(18x^3-12x^2+2x\)
c. \(x^3-5x^2-4x+20\)
d. \(\left(x+7\right)\left(x+15\right)+15\)
\(a.\) \(ax^2-a^2x-x+a\)
\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(ax-1\right)\left(x-a\right)\)
\(b.\) \(18x^3-12x^2+2x\)
\(=2x\left(9x^2-6x+1\right)\)
\(=2x\left(3x-1\right)^2\)
\(c.\) \(x^3-5x^2-4x+20\)
\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)
\(=x^2+15x+7x+105+15\)
\(=x^2+22x+120\)
\(=\left(x+10\right)\left(x+12\right)\)
Phần tích các đa thức sau thành nhân tử :
a, x^3 + 8x^2 + 17x + 10
b, x^4 - 2x^3 - 12x^2 + 12x + 36
a) \(x^3+8x^2+17x+10\)
\(=x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+7x+10\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
b) \(=x^4-2x^3-12x^2+12x+36\)
\(=x^2\left(x^2-2x-6\right)-2\left(x^2-2x-6\right)\)
\(=\left(x^2-2\right)\left(x^2-2x-6\right)\)
phân tích đa thức thành nhân tử và tìm x
`a, 8x (x-3)+x-3=0`
`b, x^2+36=12x`
a) \(8x\left(x-3\right)+x-3=0\)
\(\Rightarrow8x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{8}\end{matrix}\right.\)
b) \(x^2+36=12x\)
\(\Rightarrow x^2-12x+36=0\)
\(\Rightarrow\left(x-6\right)^2=0\)
\(\Rightarrow x=6\)