Cho ΔABC nhọn. Vẽ AH vuông góc BC, BI vuông góc AC. Chứng minh \(\widehat{IBC}=\widehat{HAC}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác nhọn ABC. Vẽ AHBC; BIAC. Chứng minh góc IBC bằng góc HAC
Xét tam giác AHC vuông tại H có \(\widehat{HAC}+\widehat{ACB}=90^0\)
Xét tam giác BIC vuông tại I có \(\widehat{IBC}+\widehat{ACB}=90^0\)
Do đó: \(\widehat{HAC}=\widehat{IBC}\)
Cho ΔABC vuông tại A (AB < AC)
Kẻ \(AH\perp BC\) tại H
a) Chứng minh \(\widehat{ABC}\) = \(\widehat{HAC}\)
b) Chứng minh \(\widehat{ACB}\) = \(\widehat{HAB}\)
a)
Xét 2 tam giác vuông ABC và HAC có:
\(\widehat{C}\) chung
=> tg ABC \(\sim\) td HAC (g.g)
=> \(\widehat{ABC}=\widehat{HAC}\)
b)
Xét 2 tg vuông ACB và HAB có:
\(\widehat{B}\) chung
=> tg ACB \(\sim\) tg HAB (g.g)
=> \(\widehat{ACB}=\widehat{HAB}\)
Cho tam giác ABC vuông tại A có AB<AC trên cạch BC lấy điểm D sao cho AB = BD,kẻ AH vuông góc với BC,kẻ DK vuông góc với AC.
a)Chứng minh:\(\widehat{BAD}=\widehat{BDA}\) b)C/M:AD là tia phân giác của \(\widehat{HAC}\)
c)C/M: AK=AH d)C/M:AB+AC<BC+AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
chúc bn học tốt
Cho tam giác nhọn ABC có AB<AC kẻ AH vuông góc với BC (H\(\in\)BC) AE là tia phân giác góc HAC. Kẻ ED vuông góc với AC (D\(\in\)AC). Chứng minh rằng
a) \(\Delta HAE=\Delta DAE\)
b) EC>HE
c) So sánh \(\widehat{BAH}\)và \(\widehat{HAC}\)
Viết giả thiết, kết luận vẽ hình
GIÚP MÌNH VỚI
Cho tam giác ABC vuông tại A, đường cao AH, từ H kẻ đường thẳng vuông góc với AC tại K. Vẽ tia phân giác của \(\widehat{HAC}\)cắt HK tại I. từ I kẻ đường thẳng song song với BC cắt AC tại D. Chứng minh rằng: \(\widehat{AIH}=\widehat{AID}\)
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.
b) Xét ΔMEB và ΔMCF có
\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)
\(\widehat{M}\) chung
Do đó: ΔMEB\(\sim\)ΔMCF(g-g)
Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)
hay \(ME\cdot MF=MB\cdot MC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)
Cho tam giác ABC vuông tại A. Vẽ AH vuông góc BC tại H. Trên BC lấy điểm K sao cho BK=BA. Tên AC lấy điểm I sao cho AI=AK. Cm:
a) Tam giác ABC cân
b) \(\widehat{BAH}=\widehat{ACB}\)
c)Góc HAC=KAI
d) AC vuông góc với KI
e) BC-AC>AC-AH
f)AH+BC>AB+AC
theo minh la dap an A ;nho k minh nhe
Cho tam giác ABC nhọn.vẽ AH vuông góc BC, BI vuông góc AH.chứng minh IBC=HAC
GIÚP MK IK MÀ T_T
Nhưng AH đã vuông góc với BC rồi sao BI vuông góc với Ah nữa
Cho ΔABC vuông tại A, AH ⊥ BC tại H. Trên cạnh BC lấy D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC ở E
a) So sánh AE và DE
b) Chứng minh tia AD là tia phân giác của góc HAC
c) Vẽ DK vuông góc với AC tại K. Chứng minh rằng AK = AH
a, vì BD=BA nên t.giác DBA caab tại B
=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)
=>t.giác EAD cân tại E
=>AE=DE đpcm
b,vì ED và AH cùng vuông góc vs BC nên ED//AH
=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)
=>\(\widehat{DAH}\)=\(\widehat{EAD}\)
=> AD là p/g của góc HAC
c, xét 2 t.giác vuông AKD và AHD có:
AD chung
\(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))
=>t.giác AKD=t.giác AHD(CH-GN)
=>AK=AH
#HỌC TỐT#