Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yyyyy
Xem chi tiết
luongvy
Xem chi tiết
TranGiaHuy8A2PhuThai2022
14 tháng 3 2022 lúc 20:43

undefinedundefined

hhhhhhhhhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 18:20

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

hhhhhhhhhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 18:21

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

lê thuận
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 11 2023 lúc 18:40

a: ABCD là hình chữ nhật

=>\(BD^2=BA^2+BC^2\)

=>\(BD^2=5^2+12^2=169\)

=>BD=13(cm)

b: Xét ΔADB vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: \(\widehat{HDK}+\widehat{HBC}=90^0\)(ΔBDC vuông tại C)

\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{HBC}=\widehat{HBI}\left(I\in BC\right)\)

nên \(\widehat{HDK}=\widehat{HIB}\)

Xét ΔHDK vuông tại H và ΔHIB vuông tại H có

\(\widehat{HDK}=\widehat{HIB}\)

Do đó: ΔHDK đồng dạng với ΔHIB

=>\(\dfrac{HD}{HI}=\dfrac{HK}{HB}\)

=>\(HD\cdot HB=HK\cdot HI\)(1)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AH^2=HK\cdot HI\)

hhhhhhhhhhh
Xem chi tiết
mienmien
8 tháng 4 2022 lúc 13:24

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

hhhhhhhhhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 18:19

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)

Thị Thu Thảo Lê
Xem chi tiết

a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:

\(D B ^2 = B C ^2 + C D ^2\)

\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)

hay DB=15(cm)

Xét ΔBDC có 

BE là đường phân giác ứng với cạnh DC

nên 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 5 2018 lúc 13:21

a, BD = 17cm

b, AH =  120 17 cm

c, HS tự làm