Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
AVĐ md roblox
8 tháng 2 2023 lúc 20:39

???

9323
8 tháng 2 2023 lúc 20:58

bn ơi???

bnoug
Xem chi tiết
Meopeow1029
Xem chi tiết
Yeutoanhoc
17 tháng 5 2021 lúc 20:38

`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`

迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:42

+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)

Giải:

 \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}\) 

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

...

\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}< \dfrac{1}{2020.2021}\) 

\(\Rightarrow M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}\) 

\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\) 

\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2021}< 1\)

\(\Rightarrow M< 1\left(1\right)\) 

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

...

\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\) 

\(\Rightarrow M>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}\) 

\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)  

\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}=\dfrac{1}{3}+\dfrac{56}{337}>\dfrac{1}{3}\left(2\right)\)  

Vậy \(\dfrac{1}{3}< M< 1\) (đpcm)

Chúc bạn học tốt!

Nga Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2023 lúc 22:42

1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50

=1/1-1/2+1/2-1/3+...+1/49-1/50<1

=>S<1+1=2

Phạm Hồng Mai
Xem chi tiết
Nguyễn Tuấn Minh
7 tháng 4 2017 lúc 20:09

\(S=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{50^2}\right)\)

Xét \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< \frac{1}{2}-\frac{1}{50}< \frac{1}{2}\)

\(=>A< \frac{1}{2}\)

=>\(S=\frac{1}{4}+A< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy S<3/4

Phạm Bá Gia Nhất
Xem chi tiết
Trương Việt Hoàng
Xem chi tiết
qqqqqqq
Xem chi tiết
Yen Nhi
8 tháng 4 2022 lúc 21:43

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

Khách vãng lai đã xóa
Nguyễn vũ kim ngân
Xem chi tiết