Cho S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/50^2
Chứng minh rằng S<4/9
cho S = 1/5^2 + 1/7^2 + 1/9^2+...+1/103^2
Chứng minh rằng S < 5/32
M=1/2^2+1/3^2+1/4^2+...+1/2021^2
chứng minh rằng:1/3<M<1
`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`
+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)
Giải:
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}< \dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(\Rightarrow M< \dfrac{1}{1}-\dfrac{1}{2021}< 1\)
\(\Rightarrow M< 1\left(1\right)\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
...
\(\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(\Rightarrow M>\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}=\dfrac{1}{3}+\dfrac{56}{337}>\dfrac{1}{3}\left(2\right)\)
Vậy \(\dfrac{1}{3}< M< 1\) (đpcm)
Chúc bạn học tốt!
S = \(\dfrac{1}{1^2}\) +\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+....+\(\dfrac{1}{50^2}\). Chứng minh rằng S < 2
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
50 mũ 2 nhé
Chứng minh rằng S<\(\frac{3}{4}\)
\(S=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{50^2}\right)\)
Xét \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< \frac{1}{2}-\frac{1}{50}< \frac{1}{2}\)
\(=>A< \frac{1}{2}\)
=>\(S=\frac{1}{4}+A< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
vậy S<3/4
Cho S = 1/2 + 1/2 mũ 2 + 1/2 mũ 3 + 1/2 mũ 50
Chứng minh rằng S<1.
(Giải bằng 3 cách)
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Cho S=1/2+1/3+1/4+...+1/31+1/32 a) chứng minh rằng S>5/2 b) chứng minh rằng S<9/2
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
Cho S = 2/1×2 + 2/2×3 + 2/3×4 +...+ 2/49×50. Hãy chứng tỏ rằng S<2