Cho tứ giác ABCD E và F lần lượt là trung điểm E và F chứng minh
Vecto IA+IB+IC+ID=vecto 0
cho tứ giác ABCD .Gọi E ,F,I lần lượt là trung điểm của AC ,BD ,EF .tính P = vecto IA + vecto IB + vecto IC + vecto ID
cho tứ giác ABCD .lấy điểm M và N lần lượt là trung điểm của AB và CD . I là trung điểm của MN . chứng minh rằng vt IA+ vt IB+ vt IC+ vt ID =0
dễ mà ,mình bỏ chữ vecto nha
IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND
=2IM+2IN+MA+MB+NC+ND
=0
cho tứ giác lồi ABCD . CM vecto AB+CD= vecto AD+BC
AB-CD=AC-BD
b) E,F,O lll trung điểm AB,CD,EF.CM vecto OA+OB+OC+OD=0
c) M bất kì cmr vecto MA+MB+MC+MD=4MO
d) giả sử 2 dg chéo AC,BD cắt nhau tại I cho vecto IA+IB+IC+ID=0.CM ABCD là hình bình hành
to tứ giác ABCD gọi M, N lần lượt là trung điểm của AB , CD . Trên đoạn thẳng MN lấy 2 điểm của O , I sao cho vecto MO = vecto OI = vecto IN . Tính tổng vecto OA + vecto IB + vecto IC + vecto OD
Cho tứ diện ABCD . Gọi E, F lần lượt là trung điểm của AB và CD, I là trung điểm của EF:
a/ Chứng minh : \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b/ Chứng minh : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{4MI}\) , với M tùy ý
Bài 8: Cho hình thang ABCD (AB // CD). Gọi E, F, K lần lượt là trung điểm của AD, BC, BD
a) Chứng minh EK // AB // KF và E, F, K thẳng hàng
b) Gọi I là giao điểm của EF và AC. Chứng minh rằng IA = IC
Cho tứ giác ABCD. Gọi M, N, J lần lượt là trung điểm của các cạnh AD, BC, AC và BD. Chứng minh rằng : vecto MA +vecto IJ = vecto NB
Cho tam giác ABC (AB<AC). Đường tròn (I) nội tiếp tam giác ABC, tiếp xúc với CA, AB lần lượt tại E, F. Gọi G, H là các điểm đối xứng cưa E, F qua I. Đường thẳng GH cắt IB, IC lần lượt tại P và Q; IB và IC lần lượt cắt EF tại K và L.
a, Chứng minh rằng tứ giác BKLC nội tiếp đường tròn
b, Chứng minh rằng I là trung điểm của BC
c, Giả sử B, C cố định, A thay đổi sao cho tỉ số AB/AC=k (không đổi). Chứng minh rằng đường trung trực của PQ luôn đi qua một điểm cố định.