cho tứ giác ABCD .Gọi E ,F,I lần lượt là trung điểm của AC ,BD ,EF .tính P = vecto IA + vecto IB + vecto IC + vecto ID
Cho tứ giác ABCD. Gọi M, N, J lần lượt là trung điểm của các cạnh AD, BC, AC và BD. Chứng minh rằng : vecto MA +vecto IJ = vecto NB
cho tứ giác ABCD. Gọi E,F,G,H lần lượt là trung điểm AB,BC,CD,DA và M là 1 điểm tùy ý. CMR: vecto AB+ vecto AC+vecto AD = 4 vecto AG
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của BC, CA và AB. Chứng minh các vecto AM+BN+CE=0
cho tứ giác ABCD có I,J lần lượt là trung điểm của AB và CD và O là trung điểm của I,J. Chứng minh OA+OB+OC+OD= vecto 0
giúp mik với ạ
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của AB, AC và BC. Gọi I là trung điểm của MN. Đặt vecto u = vecto AB , vecto v = vecto AC
a) Hãy phân tích vecto AI theo hai vecto u và v
b) Hãy phân tích vecto EI theo hai vecto u và v.
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng vecto md+me+mf=3/2mo( k dùng phương pháp kẻ song song ạ)
Cho tam giác ABC. Trên các cạnh AB và BC lấy các điểm E, F sao cho AE = 3/4 AB ; BF = 2/5 BC. Gọi H, I lần lượt là trung điểm AC và EH. Chứng minh ba điểm A, I, F thẳng hàng.
Cho tam giác ABC trọng tâm G . Gọi I là trung điểm của AG Chứng minh : vecto AB + vecto AC + 6vecto GI = vecto 0