Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thanh Hằng
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 14:40

1.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}+\dfrac{1}{2}cos\left(2x-\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow-cos4x=cos\left(2x-\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow cos\left(4x-\pi\right)=cos\left(2x-\dfrac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\pi=2x-\dfrac{\pi}{2}+k2\pi\\4x-\pi=\dfrac{\pi}{2}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 14:42

2.

\(\Leftrightarrow1-cos^2x+1-sin^24x=2\)

\(\Leftrightarrow cos^2x+sin^24x=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\sin4x=0\end{matrix}\right.\)

\(\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Bàn phương liên
Xem chi tiết
nguyễn thị hương giang
2 tháng 10 2021 lúc 14:34

a) \(cos\left(4x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\Rightarrow cos\left(4x+\dfrac{\pi}{3}\right)=cos\dfrac{\pi}{6}\)

                                      \(\Rightarrow\left[{}\begin{matrix}4x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\4x+\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

                                            ..... bạn tự tìm x nhé!

b)\(sin^2x-3sin3x+2=0\)\(\Rightarrow sin^2x-3\left(3sinx-4sin^3x\right)+2=0\)

\(\Rightarrow12sin^3x+sin^2x-9sinx+2=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\dfrac{2}{3}\\sinx=\dfrac{1}{4}\end{matrix}\right.\)    \(\Rightarrow\).... bạn tự tìm x nhé!

c)\(tan\left(2x+10^o\right)=\sqrt{3}\Rightarrow tan\left(2x+10^o\right)=tan60^o\)

                                     \(\Rightarrow2x+10^o=60^o+k180^o\)

                                     \(\Rightarrow x=25^o+k90^o\left(k\in Z\right)\)

d) \(tanx\cdot cot2x=1\)

Đk: \(\left\{{}\begin{matrix}cosx\ne0\\sin2x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m\pi\\x\ne m\dfrac{\pi}{2}\end{matrix}\right.\)

Pt: \(\Rightarrow tanx=tan2x\Rightarrow x=2x+k\pi\)

                                 \(\Rightarrow x=k\pi\)

  Đối chiếu với đk trên thỏa mãn đk\(\Rightarrow x=k\pi\)

Ngọc Hân
Xem chi tiết
Vũ Đức Toàn
20 tháng 9 2016 lúc 12:26

đề đúng không vậy

Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 13:07

cos 5x-sin(3x+pi)=0

=>sin(3x+pi)=cos5x

=>sin(3x+pi)=sin(pi/2-5x)

=>3x+pi=pi/2-5x+k2pi hoặc 3x+pi=pi/2+5x+k2pi

=>8x=-pi/2+k2pi hoặc -2x=-pi/2+k2pi

=>x=-pi/16+kpi/4 hoặc x=pi/4-kpi

Nguyễn Hà Duyên
Xem chi tiết
Chú bé rồng online
Xem chi tiết
Adonis Baldric
5 tháng 8 2017 lúc 12:24

\(cos\cdot\left(3x-\dfrac{\pi}{6}\right)=sin\cdot\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{6}=\dfrac{\pi}{4}-x+k2\pi\\3x-\dfrac{\pi}{6}=\dfrac{-\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{-\pi}{12}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{48}+\dfrac{k\pi}{2}\\x=\dfrac{-\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

Lan Hương
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 5:26

\(\Leftrightarrow sin^3x+3sin^2x+3sinx+1-cos^3x+sinx-cosx+1=0\)

\(\Leftrightarrow\left(sinx+1\right)^3-cos^3x+sinx-cosx+1=0\)

\(\Leftrightarrow\left(sinx-cosx+1\right)\left[\left(sinx+1\right)^2+cosx\left(sinx+1\right)+cos^2x\right]+sinx-cosx+1=0\)

\(\Leftrightarrow\left(sinx-cosx+1\right)\left(2sinx+sinx.cosx+cosx+2\right)+sinx-cosx+1=0\)

\(\Leftrightarrow\left(sinx-cosx+1\right)\left(2sinx+cosx+sinx.cosx+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=-1\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\Leftrightarrow...\\2sinx+cosx+sinx.cosx+3=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow2\left(sinx+1\right)+cosx\left(sinx+1\right)+1=0\)

\(\Leftrightarrow\left(cosx+2\right)\left(sinx+1\right)+1=0\)

Do \(sinx;cosx\ge-1\Rightarrow\left(cosx+2\right)\left(sinx+1\right)\ge0\)

\(\Rightarrow\left(cosx+2\right)\left(sinx+1\right)+1=0\) vô nghiệm

Khách vãng lai đã xóa
Nguyễn Ngọc Thanh Vân
Xem chi tiết