Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hà ngọc ánh
Xem chi tiết
Cửu Lục Nguyệt
Xem chi tiết
₮ØⱤ₴₮
13 tháng 10 2019 lúc 15:33

\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)

₮ØⱤ₴₮
13 tháng 10 2019 lúc 15:38

\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)

\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)

\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)

\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)

\(=2\sqrt{3}\)

₮ØⱤ₴₮
13 tháng 10 2019 lúc 15:55

\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+5}\right):2\sqrt{5}\)

\(=\left(5\cdot\frac{\sqrt{1}}{\sqrt{5}}+\frac{1}{2}\sqrt{4.5}-\frac{5}{4}\sqrt{\frac{4+25}{5}}\right)\cdot\frac{1}{2\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{\sqrt{5}.\sqrt{5}}+\frac{1}{2}.2\sqrt{5}-\frac{5}{4}\sqrt{\frac{29}{5}}\right)\cdot\frac{\sqrt{5}}{2\cdot\sqrt{5}\cdot\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}}{\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(\sqrt{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}\sqrt{5}}{\sqrt{5}\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{145}}{5}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{\sqrt{145}}{4}\right)\cdot\frac{\sqrt{5}}{10}\)

nguyen van bi
Xem chi tiết
Nhóc Bin
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2020 lúc 13:30

Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)

\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)

...

\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

Cộng các bất đẳng thức trên lại với nhau, ta được:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)

\(\Leftrightarrow A>4\)(đpcm)

Nhi lê
Xem chi tiết
Nhi lê
29 tháng 10 2020 lúc 19:35

Trả lời nhanh giúp mình với mình cần gấp lắm

Khách vãng lai đã xóa
tuyết lang
Xem chi tiết
Mất nick đau lòng con qu...
14 tháng 12 2018 lúc 19:03

Sai đề nha bạn, 2 số dưới mẫu cuối cùng là \(\sqrt{79}\) và \(\sqrt{80}\) mới theo quy luật 

Nhận xét: với mọi \(a\inℕ^∗\) ta có : 

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a+1}+\sqrt{a}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{a-1}+\sqrt{a}}=\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}\)

\(=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a-1}+\sqrt{a}\right)\left(\sqrt{a}-\sqrt{a-1}\right)}+\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a+1}+\sqrt{a}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}\)

\(=\sqrt{a}-\sqrt{a-1}+\sqrt{a+1}-\sqrt{a}=\sqrt{a+1}-\sqrt{a-1}\)

\(\Rightarrow\)\(2B=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+\frac{2}{\sqrt{5}+\sqrt{6}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)

\(>\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{81}-\sqrt{79}\)

\(=\sqrt{81}-1=9-1=8\)

\(2B>8\)\(\Rightarrow\)\(B>\frac{8}{2}=4\) ( đpcm ) 

... 

tuyết lang
14 tháng 12 2018 lúc 19:54

à ừ cảm ơn bạn nhìu nha

Đặng Phạm Thanh Tâm
19 tháng 11 2019 lúc 21:12

Ai chỉ cho mình cách đổi ảnh chính đi!(Tiếng Việt)

Please show me how to change the main image!(Tiếng Anh)

Khách vãng lai đã xóa
Nguoi Ngu
Xem chi tiết
Trần Huệ
Xem chi tiết
Vũ Đình An
Xem chi tiết
Trương Huy Hoàng
10 tháng 10 2020 lúc 17:03

Giúp bn bài 1 thôi

Bài 1:

a, \(\sqrt{7-2\sqrt{10}}=\sqrt{5-2\sqrt{10}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\) (\(\sqrt{5}>\sqrt{2}\)) (đpcm)

b, \(\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\) (đpcm)

Chúc bn học tốt!

Vũ Đình An
10 tháng 10 2020 lúc 17:58

thanks nhiều nha