D=1/2+1/6+1/18+1/54+1/4374+1/13122 ( . (DẤU CHẤM LÀ ''NHÂN'')
A=1/1.2+1/2.3+1/3.4+1/4.5+...+1/98.99+1/99.100
B=2/1.3+2/3.5+2/5.7+2/7.9+...+2/97.99+2/99.101
C=1/2+1/4+1/8+1/16+...+1/1024+1/2048
D=1/2+1/6+1/18+1/54+1/4374+1/13122 ( . (DẤU CHẤM LÀ ''NHÂN'')
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)
\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)
Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
1/2+1/6+1/18+1/54+1/4374+1/13122
Bài 1: Tính nhanh a)39.(250+87)+ 64.(240+97)
b)3.25.8+ 3.37.6+ 2.38.12
c)1+4+5+9+14+ …+60+97
d)2+6+18+54+ …+4374+13122
39.337+64.337=337.103=337.100+337.3=33700+1011=34711
tính nhanh 1/2+ 1/6 + 1/18 + 1/54 +...1/4374
Kiến thức cần nhớ:
Đấy là dạng tính nhanh phân số mà mẫu nọ gấp một số lần mẫu kia, ta nhân cả hai vế với số lần, trừ vế cho vế, triệt tiêu các hạng tử giống nhau, rút gọn ta được tổng cần tìm.
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)+\(\dfrac{1}{4374}\)
A \(\times\) 3 = \(\dfrac{3}{2}\)+\(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{54}\)+...+ \(\dfrac{1}{1458}\)
A \(\times\) 3 - A = \(\dfrac{3}{2}\) - \(\dfrac{1}{4374}\)
A \(\times\) ( 3 - 1) = \(\dfrac{6561}{4374}\) - \(\dfrac{1}{4374}\)
A \(\times\) 2 = \(\dfrac{6560}{4374}\)
A \(\times\) 2 = \(\dfrac{3280}{2187}\)
A = \(\dfrac{3280}{2187}\): 2
A = \(\dfrac{1640}{2187}\)
tính nhanh : B= 1/2 +1/6 + 1/18 + 1/54 + ......+ 1/1458 + 1/4374
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\)
giải hẳn ra nhé 3 tick
Đặt S =\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\)
3S = \(3\times\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
3S \(=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\)
3S - S \(=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
2S = \(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-...-\frac{1}{1458}-\frac{1}{4374}\)
2S = \(\frac{3}{2}-\frac{1}{4374}\)
2S = \(\frac{3280}{2187}\)
\(\Rightarrow S=\frac{3280}{2187}:2=\frac{4373}{8748}\)
Đáp án cuối cùng của "Ông nội bây" sai rùi phải là :
=> \(s=\frac{3280}{2187}:2=\frac{3280}{4374}\)
Còn lại đúng hết nên mk sẽ cho bn 3 h
TÍNH GIÁ TRỊ BIỂU THỨC
C= 1/2 + 1/6 + 1/18 + 1/54 +....+ 1/1458 + 1/4374
Giúp mình với mai mình phải nộp bài rồi
Ta có: \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\)
\(\Leftrightarrow3\cdot C=3\cdot\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow3\cdot C=\frac{3}{2}+\frac{3}{6}+\frac{3}{18}+\frac{3}{54}+...+\frac{3}{1458}+\frac{3}{4374}\)
\(\Leftrightarrow3\cdot C-C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-\frac{1}{54}-...-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{3}{2}-\frac{1}{4374}\)
\(\Leftrightarrow2\cdot C=\frac{6561}{4374}-\frac{1}{4374}=\frac{3280}{2187}\)
\(\Leftrightarrow C=\frac{3280}{2187}:2=\frac{3280}{2187}\cdot\frac{1}{2}=\frac{1640}{2187}\)
anh Nguyễn Lê Phước Thịnh ra nhiều cuộc thi hơn đc ko ạ, mong anh giúp ạ ( lớp 7 nha anh )
p = 1/2 + 1/6 + 1/18 +....+1/4374
Ta thấy:
\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4374}\\ =\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\right)\\ =\frac{1}{2}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
Mà:
\(\frac{1}{3}P=\frac{1}{2}\cdot\frac{1}{3}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^7}\right)\\ =\frac{1}{2}\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
Suy ra: \(P-\frac{1}{3}P=\frac{1}{2}\left[\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\right]\)
hay \(\frac{2}{3}P=\frac{1}{2}\left(\frac{1}{3^0}-\frac{1}{3^8}\right)=\frac{1}{2}\left(1-\frac{1}{6561}\right)=\frac{3280}{6561}\)
Vậy \(P=\frac{3280}{6561}:\frac{2}{3}=\frac{1640}{2187}\).
Chúc bạn học tốt nha.
A ) a = 1/2 + 1/6 + 1/18 + 1/54 + 1/162
B ) 1/2 + 1/6 + 1/ 12 + 1/ 20 + ...+ 1/ 9900
C ) 20.2*5.1-30.3*3.4+14.56/ 14.58*460+7.29 *540*2
* đây là dấu nhân nhé
A) bạn xem lại đề ạ
B) 1/2 + 1/6 + 1/ 12 + 1/ 20 + ...+ 1/ 9900
=1/2+1/6+1/12+...+1/9900
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100
=99/100
C) Biến đổi tử số và mẫu số ta có
- Tử số: 20,2 x 5,1 - 30,3 x 3,4 + 14,58
= 103,02 - 103,02 + 14,58
= 14,58
- Mẫu số: 14,58 x 460 + 7,29 x 540 x 2
= 14,58 x 460 + 14,58 x 540
= 14,58 x (460 + 540)
= 14,58 x 1000
= 14580
Thay vào ta có: = 14,58 : 14580
= 0,001
Vậy 20.2*5.1-30.3*3.4+14.56/ 14.58*460+7.29 *540*2 = 0,001.
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\frac{1}{162}\)
\(\Rightarrow A=\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)\)
Gọi \(B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow B-\frac{1}{3}B=1-\frac{1}{243}\)
\(\Rightarrow\frac{2}{3}B=\frac{242}{243}\)
\(\Rightarrow B=\frac{121}{81}\)
Suy ra \(A=\frac{1}{2}B=\frac{1}{2}.\frac{121}{81}=\frac{121}{162}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)