CMR
\(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}=\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)
CMR \(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
Đặt \(a=\sqrt[4]{5}\Leftrightarrow5=a^4\)
Ta cần chứng minh: \(\left(\frac{a+1}{a-1}\right)^4=\frac{3+2a}{3-2a}\)
Khai triển: \(VT=\left(\frac{a+1}{a-1}\right)^4=\frac{\left(a+1\right)^4}{\left(a-1\right)^4}\)
\(=\frac{2\left(3+2a\right).\left(1+a^2\right)}{2\left(3-2a\right).\left(1+a^2\right)}\)
\(\frac{3+2a}{3-2a}=VP\)(đpcm)
CMR : \(\frac{\sqrt[4]{5}-1}{\sqrt{5}+1}=\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)
cmr các đẳng thức :
1/\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
2/\(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
3/\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
giúp mik vs mik cần gấp lắm
Giải :
1) \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
2) \(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
3) \(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
4) \(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)
\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)
\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)
\(=2\sqrt{3}\)
\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+5}\right):2\sqrt{5}\)
\(=\left(5\cdot\frac{\sqrt{1}}{\sqrt{5}}+\frac{1}{2}\sqrt{4.5}-\frac{5}{4}\sqrt{\frac{4+25}{5}}\right)\cdot\frac{1}{2\sqrt{5}}\)
\(=\left(\frac{5\sqrt{5}}{\sqrt{5}.\sqrt{5}}+\frac{1}{2}.2\sqrt{5}-\frac{5}{4}\sqrt{\frac{29}{5}}\right)\cdot\frac{\sqrt{5}}{2\cdot\sqrt{5}\cdot\sqrt{5}}\)
\(=\left(\frac{5\sqrt{5}}{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}}{\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)
\(=\left(\sqrt{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}\sqrt{5}}{\sqrt{5}\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)
\(=\left(2\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{145}}{5}\right)\cdot\frac{\sqrt{5}}{10}\)
\(=\left(2\sqrt{5}-\frac{\sqrt{145}}{4}\right)\cdot\frac{\sqrt{5}}{10}\)
1. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}\left(2< x< 5\right)\)
2. \(\frac{6}{1-\sqrt{3}}-\frac{3\sqrt{3}-1}{\sqrt{3}+1}+\sqrt{3}\)
3. \(\sqrt{29-12\sqrt{5}+\sqrt{24-8\sqrt{3}}}\)
4. \(\sqrt{\frac{4}{9-4\sqrt{5}}}-\sqrt{\frac{4}{9+4\sqrt{5}}}\)
5. \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{x}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\)
6. \(\frac{6-\sqrt{6}}{\sqrt{6}-1}-9\sqrt{\frac{2}{3}}-\frac{4}{2-\sqrt{6}}\)
7. \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(\sqrt{x}-1\right)^2}{2}\left(x\ge0,x\ne1\right)\)
Trả lời nhanh giúp mình với mình cần gấp lắm
Thực hiện phép tính
1)\(\frac{\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}+\sqrt{2}}{\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}+\sqrt{5}}\)
2)\(\left(4+\sqrt{15}\right)\left(10-\sqrt{6}\right)-\sqrt{4-\sqrt{15}}\)
3)\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
4)\(\frac{2\sqrt{3-\sqrt{5+\sqrt{13-\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
5)\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Tính \(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(C=\sqrt{4+5}\)
\(C=3\)
\(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}=\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)
\(\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)= \(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)
Từ đó thì
\(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}\)= \(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)
<=> \(\frac{1+\sqrt{5}-2\sqrt[4]{5}}{1+\sqrt{5}+2\sqrt[4]{5}}=\frac{\sqrt{5}-2}{3-2\sqrt[4]{5}}\)
<=> \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\) = \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\)
Vậy cái đầu tiên là đúng