tính nhanh: 2020^3-1/2020^2+2021
Tính nhanh :
a) A = \(\frac{2020^3+1}{2020^2-2019}\)
b) B = \(\frac{2020^3-1}{2020^2+2021}\)
Tính nhanh: (2022 x 2021 – 2021 x 2020) x( 1 + \(\dfrac{1}{2}\) : \(1\dfrac{1}{2}\) - \(1\dfrac{1}{3}\) )
\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)
tính giá trị biểu thức:
P=2/2020*(1/2020+5/2020)-1/2021*(7-2/2020)-2/2020*(1/2020+6/2021)
𝑝=−2856279824648840
(13/2020+23/2021-33/2022)-(1/2-1/3-1/6) tính nhanh
tính nhanh: (1+3+5+7+...+2019+2021)-(2+4+6+8+...+2020)
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
(2+4+6+8+...+2020)
B=2+4+6+8+...+2018+2020
B = 2(1 + 2 + 3 + 4 + ... + 1009 + 1010)
B = 2 . (1011 . 1010 : 2)
B = 2 . 510555
B = 1 021 110
(1+3+5+7+......+2019+2021)-(2+4+6+8+.....+2020)
\(=\dfrac{\left(1+2021\right).\left[\left(2021-1\right):2+1\right]}{2}-\dfrac{\left(2+2020\right).\left[\left(2020-2\right):2+1\right]}{2}\)
\(=1011\)
So sánh:
A=2021^2020+2/2021^2020-1 và B=2021^2020/2021^2020-3
Tính nhanh:
a) A=\(\frac{2020^3+1}{2020^2-2019}\) b)B=\(\frac{2020^3-1}{2020^2+2021}\)
a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)
a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)
b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)
Tính nhanh :
a, A = 2020^3 + 1 / 2020^2 - 2019
b, B = 2020^3 - 1 / 2020^2 + 2021
Giúp mk vs ạ mk đang cần gấp
Tính : \(\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Ta có: \(2021^2=\left(2020+1\right)^2=2020^2+2.2020.1+1^2\)
\(\Rightarrow1+2020^2=2021^2-2.2020\)
\(\Rightarrow\sqrt{1+2020^2+\frac{2020^2}{2021}}+\frac{2020}{2021}\)
\(=\sqrt{2021^2-2.2020+\frac{2020^2}{2021}}+\frac{2020}{2021}\)
\(=\sqrt{2021^2-2.2021.\frac{2020}{2021}+\left(\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
\(=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
\(=2021-\frac{2020}{2021}+\frac{2020}{2021}=2021\)